Skip to main content
Log in

Pose invariant face recognition based on hybrid-global linear regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper presents a simple but efficient novel H-eigenface (Hybrid-eigenface) method for pose invariant face recognition ranging from frontal to profile view. H-eigenfaces are entirely new basis for face image representation under different poses and are used for virtual frontal view synthesis. The proposed method is based on the fact that face samples of same person under different poses are similar in terms of the combination pattern of facial features. H-eigenfaces exploit this fact and thus two H-eigenfaces under different poses capture same features of the face. Thereby providing a compact view-based subspace, which can be further used to generate virtual frontal view from inputted non-frontal face image using least square projection technique. The use of proposed methodology on FERET and ORL face database shows an impressive improvement in recognition accuracy and a distinct reduction in online computation when compared to global linear regression method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao W, Chellappa R, Rosenfeld A, Philips PJ (2003) Face recognition: a literature survey. ACM Comput Surv 35:399–458. doi:10.1145/954339.954342

    Article  Google Scholar 

  2. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosc 3:71–96. doi:10.1162/jocn.1991.3.1.71

    Article  Google Scholar 

  3. Moghaddam B, Jebara T, Pentland A (2000) Bayesian face recognition. Pattern Recognit 33:1771–1782. doi:10.1016/S0031-3203(99)00179-X

    Article  Google Scholar 

  4. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19:711–720. doi:10.1109/34.598228

    Article  Google Scholar 

  5. Gross R, Matthews I, Baker S (2002) Eigen light-fields and face recognition across pose. In: Proceedings of the 5th international conference on automatic face and gesture recognition, Washington, DC, pp 3–9. doi:10.1109/AFGR.2002.1004122

  6. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH, New York, pp 187–194. doi:10.1145/311535.311556

  7. Blanz V, Vetter T (2003) Face recognition based on fitting a 3-D morphable model. IEEE Trans Pattern Anal Mach Intell 25:1063–1074. doi:10.1109/TPAMI.2003.1227983

    Article  Google Scholar 

  8. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23:643–660. doi:10.1109/34.927464

    Article  Google Scholar 

  9. Zhao W, Chellappa (2000) SFS based view synthesis for robust face recognition. In Proceedings of the 4th international conference on automatic face and gesture recognition, Grenoble, France, pp 285–292. doi:10.1109/AFGR.2000.840648

  10. Feng G, Yuen PC (2000) Recognition of head-&-shoulder face image using virtual frontal-view image. IEEE Trans Syst Man Cybern 30:871–883

    Article  Google Scholar 

  11. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23:681–685. doi:10.1109/34.927467

    Article  Google Scholar 

  12. Cootes T, Walker K, Taylor CJ (2000) View-based active appearance models. In: Proceedings of the 4th international conference on automatic face and gesture recognition, Washington, DC, pp 227–238

  13. Beymer D (1993) Face recognition under varying pose. Tech. Rep. A. I. Memo, vol 1461. Artif. Intell. Lab., Mass. Inst. Technol, Cambridge

    Google Scholar 

  14. Beymer D, Poggio T (1995) Face recognition from one example view. In: Proceedings of the 5th international conference on computer vision, pp 500–507

  15. Vetter T, Poggio T (1997) Linear object classes and image synthesis from a single example image. IEEE Trans Pattern Anal Mach Intell 19:733–742. doi:10.1109/34.598230

    Article  Google Scholar 

  16. Chai X, Shan S, Chen X, Gao W (2006) Local linear regression (LLR) for pose invariant face recognition. In: Proceedings of the 7th international conference on automatic face and gesture recognition, Southampton, UK, Apr., pp 631–636. doi:10.1109/FGR.2006.73

  17. Pentland A, Moghaddam B, Starner T (1994) View-based and modular eigenspace for face recognition. In Proceedings of the IEEE conference on computer vision pattern recognition, Seattle, WA, pp 84–91. doi:10.1.1.47.3791

  18. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84. doi:10.1109.97.995823

    Article  Google Scholar 

  19. Phillipse P, Moon H, Rizvi S, Rauss P (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1103. doi:10.1.1.44.9852

    Article  Google Scholar 

  20. ORL face database, AT & T Laboratories, Cambridge, U. K. [Online] Available: http://www.cam-orl.co.uk/facedatabase.html, 2004

  21. Zhao W, Chellappa R, Krishnaswamy A (1998) Discriminant analysis of principal components for face recognition. In: Proceedings of the third international conference on auto face gesture recognition, pp 336–341

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma.

Appendix: universal image quality index

Appendix: universal image quality index

The quality index Q of a test image \( \left( {{\mathbf{t}} = \left\{ {t_{i} |i = 1,2, \ldots, N} \right\}} \right) \) with respect to the reference image \( \left( {r = \left\{ {r_{i} |i = 1,2, \ldots, N} \right\}} \right) \) is defined as-

$$ Q = {\frac{{4\sigma_{tr} \tilde{t}\tilde{r}}}{{(\sigma_{t}^{2} + \sigma_{r}^{2} )(\tilde{t}^{2} + \tilde{r}^{2} )}}} $$

where,

$$ \begin{gathered} \begin{array}{*{20}c} {\tilde{t} = \frac{1}{N}\sum\limits_{i = 1}^{N} {t_{i} } ,} & {\tilde{r} = \frac{1}{N}\sum\limits_{i = 1}^{N} {r_{i} } ,} & {\sigma_{t}^{2} = {\frac{1}{N - 1}}\sum\limits_{i = 1}^{N} {(t_{i} - \tilde{t})^{2} } ,} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {\sigma_{r}^{2} = {\frac{1}{N - 1}}\sum\limits_{i = 1}^{N} {(r_{i} - \tilde{r})^{2} ,} } & {\sigma_{rt}^{2} = {\frac{1}{N - 1}}\sum\limits_{i = 1}^{N} {(r_{i} - \tilde{r})(t_{i} - \tilde{t})} } \\ \end{array} . \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Dubey, A., Jagannatha, A.N. et al. Pose invariant face recognition based on hybrid-global linear regression. Neural Comput & Applic 19, 1227–1235 (2010). https://doi.org/10.1007/s00521-010-0359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0359-7

Keywords

Navigation