Skip to main content

Advertisement

Log in

Choosing the parameters of the NARMA model implemented with the recurrent perceptron for speech prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Speech signals have statistically nonstationary properties and cannot be processed properly by means of classical linear parametric models (AR, MA, ARMA). The neural network approach to time series prediction is suitable for learning and recognizing the nonlinear nature of the speech signal. We present a neural implementation of the NARMA model (nonlinear ARMA) and test it on a class of speech signals, spoken by both men and women in different dialects of the English language. The Akaike’s information criterion is proposed for the selection of the parameters of the NARMA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, New York

    MATH  Google Scholar 

  2. Mandic DP, Chambers JA (2001) Recurrent neural networks for prediction –learning algorithms, architectures and stability. John Wiley & Sons

  3. Singhal S, Wu L (1989) Training multilayer perceptrons with the extended Kalman algorithm. Advances in Neural Information Processing Systems: 133–140

  4. Catlin D (1989) Estimation, Control and the Discrete Kalman Filter. Springer Verlag

  5. Welch G, Bishop G (2001) An introduction to the Kalman filter. http://www.cs.unc.edu/~welch/kalman/

  6. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

  7. Hamilton JD (1994) Time Series Analysis. Princeton University Press

  8. Young S, Evermann G (2001) The HTK Book. Cambridge University Engineering Dept

Download references

Acknowledgments

The author would like to thank Professor Monica Dumitrescu and Professor Ion Văduva for their advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina-Anca Cidotã.

Appendix

Appendix

Proof of Proposition 1

We assume that \( \hat{w}\left( {k|k - 1} \right) \) and \( P\left( {k|k - 1} \right) \) have been calculated. From the Theorem 1, it follows that

$$ \begin{aligned} \hat{w}\left( {k + 1|k} \right) = & E\left( {w(k + 1)z(k)^{T} } \right)E\left( {z(k)z(k)^{T} } \right)^{ + } z(k) \\ = & E\left( {\left( {w(k) + q(k)} \right)z(k)^{T} } \right)E\left( {z(k)z(k)^{T} } \right)^{ + } z(k). \\ \end{aligned} $$
(6)

But E(q(k)z(k)T) = 0 because in the definition of the Kalman filter we assumed that \( E\left( {q(k)w(j)^{T} } \right) = 0\quad for\,j \le k, \) \( E\left( {r(k)q(j)} \right) = 0\quad \forall \,j,\,k \) and \( E\left( {q(j)} \right) = 0,\,\forall \,j. \)

It results that

$$ \hat{w}\left( {k + 1|k} \right) = E\left( {\left( {w(k)} \right)z(k)^{T} } \right)E\left( {z(k)z(k)^{T} } \right)^{ + } z(k) = \hat{w}\left( {k|k} \right) $$
(7)
$$ \begin{aligned} P\left( {k + 1|k} \right) = & E\left( {\left( {\hat{w}\left( {k + 1|k} \right) - w\left( {k + 1} \right)} \right)\left( {\hat{w}\left( {k + 1|k} \right) - w\left( {k + 1} \right)} \right)^{T} } \right) \\ = & E\left( {\left( {\hat{w}\left( {k|k} \right) - w\left( k \right) - q\left( k \right)} \right)\left( {\hat{w}\left( {k|k} \right) - w\left( k \right) - q\left( k \right)} \right)^{T} } \right) \\ = & P\left( {k|k} \right) + Q. \\ \end{aligned} $$
(8)

Because \( t\left( k \right) = h\left( {\hat{w}\left( {k|k - 1} \right)} \right) - H\left( k \right)\hat{w}\left( {k|k - 1} \right) \) depends only on z(k−1) = [s(1),…, s(k-1), t(1),…, t(k−1)]T, we can assume that the best linear minimum variance estimator of w(k) based on [s(1),…, s(k−1), t(1),…t(k)]T, \( \hat{w}\left( {k|k - 1,\,t(k)} \right) \) can be approximated with \( \hat{w}\left( {k|k - 1} \right) \). Applying the Theorem 2, we obtain

$$ \begin{aligned} \hat{w}\left( {k|k} \right) = & \hat{w}\left( {k|k - 1,\,t(k)} \right) + K\left( k \right)\times\left[ {s\left( k \right) - H\left( k \right)\hat{w}\left( {k|k - 1,\,t(k)} \right) - t\left( k \right)} \right] \\ = & \hat{w}\left( {k|k - 1} \right) + K\left( k \right)\left[ {s\left( k \right) - H\left( k \right)\hat{w}\left( {k|k - 1} \right) - t\left( k \right)} \right], \\ \end{aligned} $$
(9)
$$ P\left( {k|k} \right) = P\left( {k|k - 1} \right) - K\left( k \right)H\left( k \right)P\left( {k|k - 1} \right) $$
(10)

where we denoted \( K\left( k \right) = P\left( {k|k - 1} \right)H\left( k \right)^{T} \left[ {C + H\left( k \right)P\left( {k|k - 1} \right)H\left( k \right)^{T} } \right]^{ + } . \)

Because \( C + H\left( k \right)P\left( {k|k - 1} \right)H\left( k \right)^{T} \in \Re \) we have

$$ \left[ {C + H\left( k \right)P\left( {k|k - 1} \right)H\left( k \right)^{T} } \right]^{ + } = \left[ {C + H\left( k \right)P\left( {k|k - 1} \right)H\left( k \right)^{T} } \right]^{ - 1} $$
(11)

Finally, from (6) to (11), the conclusion of the Proposition 1 results. □

Proof of Proposition 2

From Theorem 1, we have

$$ \begin{aligned} \hat{s}\left( {k + 1|k} \right) = & E\left( {s\left( {k + 1} \right)z\left( k \right)^{T} } \right)E\left( {z\left( k \right)z\left( k \right)^{T} } \right)^{ + } z\left( k \right) \\ = & E\left( {\left( {H\left( {k + 1} \right)w\left( {k + 1} \right) + r\left( {k + 1} \right) + t\left( {k + 1} \right)} \right)z\left( k \right)^{T} } \right)E\left( {z\left( k \right)z\left( k \right)^{T} } \right)^{ + } z\left( k \right). \\ \end{aligned} $$

As we assumed that \( E\left( {r(k)q(j)} \right) = 0\quad \forall \,j,\,k \), it follows that

$$ \begin{aligned} \hat{s}\left( {k + 1|k} \right) = & H\left( {k + 1} \right)E\left( {w\left( {k + 1} \right)z(k)^{T} } \right)E\left( {z(k)z(k)^{T} } \right)^{ + } z(k) \\ + & E\left( {t\left( {k + 1} \right)z(k)^{T} } \right)E\left( {z(k)z\left( k \right)^{T} } \right)^{ + } z(k), \\ \end{aligned} $$

and applying Theorem 1 again, we obtain

$$ \hat{s}\left( {k + 1|k} \right) = H\left( {k + 1} \right)\hat{w}\left( {k + 1|k} \right) + \hat{t}\left( {k + 1|k} \right), $$

where we denote by \( \hat{t}\left( {k + 1|k} \right) \) the best linear minimum variance estimator of t(k + 1) based on z(k) = [s(1),…, s(k), t(1),…, t(k)]T.

It follows that

$$ \hat{s}\left( {k + 1|k} \right) = H\left( {k + 1} \right)\hat{w}\left( {k + 1|k} \right) + t\left( {k + 1} \right), $$

because by definition \( t\left( {k + 1} \right) = h\left( {\hat{w}\left( {k + 1|k} \right)} \right) - H\left( {k + 1} \right)\hat{w}\left( {k + 1|k} \right) \) depends only on z(k) = [s(1),…, s(k), t(1),…, t(k)]T, so we can assume that \( \hat{t}\left( {k + 1|k} \right) \approx t\left( {k + 1} \right). \)

But

$$ \begin{aligned} \hat{s}\left( {k + 1|k} \right) - s\left( {k + 1} \right) = & H\left( {k + 1} \right)\hat{w}\left( {k + 1|k} \right) + t\left( {k + 1} \right) - H\left( {k + 1} \right)w\left( {k + 1} \right) - r\left( {t + 1} \right) - t\left( {k + 1} \right) \\ = & H\left( {k + 1} \right)\left( {\hat{w}\left( {k + 1|k} \right) - w\left( {k + 1} \right)} \right) - r\left( {t + 1} \right), \\ \end{aligned} $$

So

$$ \begin{aligned} E\left( {\left( {\hat{s}\left( {k + 1|\,k} \right) - s\left( {k + 1} \right)} \right)\left( {\hat{s}\left( {k + 1|k} \right) - s\left( {k + 1} \right)} \right)^{T} } \right) \\ = & E\left( {\left( {H\left( {k + 1} \right)\left( {\hat{w}\left( {k + 1|\,k} \right) - w\left( {k + 1} \right)} \right) - r\left( {k + 1} \right)} \right)\left( {H\left( {k + 1} \right)\left( {\hat{w}\left( {k + 1|\,k} \right) - w\left( {k + 1} \right)} \right) - r\left( {k + 1} \right)} \right)^{T} } \right) \\ = & H\left( {k + 1} \right)P\left( {k + 1|k} \right)H\left( {k + 1} \right)^{T} + C, \\ \end{aligned} $$

because we assumed in the filter definition that

$$ E\left( {r(k)w(j)^{T} } \right) = 0\quad \forall \,j,\,k $$

and r ~ N(0, C). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cidotã, MA. Choosing the parameters of the NARMA model implemented with the recurrent perceptron for speech prediction. Neural Comput & Applic 19, 903–910 (2010). https://doi.org/10.1007/s00521-010-0375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0375-7

Keywords

Navigation