Skip to main content
Log in

Online linearization-based neural predictive control of air–fuel ratio in SI engines with PID feedback correction scheme

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Model predictive control (MPC) frequently uses online identification to overcome model mismatch. However, repeated online identification does not suit the real-time controller, due to its heavy computational burden. This work presents a computationally efficient constrained MPC scheme using nonlinear prediction and online linearization based on neural models for controlling air–fuel ratio of spark ignition engine to its stoichiometric value. The neural model for AFR identification has been trained offline. The model mismatch is taken care of by incorporating a PID feedback correction scheme. Quadratic programming using active set method has been applied for nonlinear optimization. The control scheme has been tested on mean value engine model simulations. It has been shown that neural predictive control with online linearization using PID feedback correction gives satisfactory performance and also adapts to the change in engine systems very quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

H u :

Fuel lower heating value (kJ/kg)

EVO:

Exhaust valve opening BBDC

IVO:

Intake valve opening BTDC

I :

Engine inertia (kg m2)

N :

Crankshaft speed (rpm)

P f :

Frictional power (kW)

P p :

Pumping power (kW)

P b :

Load power (kW)

P man :

Manifold pressure (bar)

P amb :

Ambient pressure (bar)

R :

Gas constant

T amb :

Ambient temperature (K)

T delay :

Transport delay (s)

T EGR :

EGR temperature (K)

T man :

Manifold temperature (K)

V man :

Manifold volume (m3)

V d :

Engine displacement (l)

e v :

Volumetric efficiency

k b :

Loading factor

\( \dot{m}_{\text{at}} \) :

Air mass flow past the throttle (kg/s)

\( \dot{m}_{\text{ap}} \) :

Air mass flow into the intake port (kg/s)

\( \dot{m}_{\text{EGR}} \) :

EGR mass flow (kg/s)

\( \dot{m}_{\text{f}} \) :

Fuel flow into intake port (kg/s)

\( \dot{m}_{\text{ff}} \) :

Fuel film mass flow (kg/s)

\( \dot{m}_{\text{fi}} \) :

Injected fuel mass flow (kg/s)

\( \dot{m}_{\text{fv}} \) :

Fuel vapour mass flow (kg/s)

n :

Crankshaft speed (krpm)

n cyl :

Number of cylinders

η i :

Indicated efficiency

α:

Throttle angle (degrees)

θ:

Spark advance (degrees)

θmbt :

MBT spark advance (degrees)

λ:

Relative air/fuel ratio

τf :

Fuel evaporation time constant (s)

γ:

Ratio of specific heats for air (1.4 for air)

References

  1. Alippi C, Russis C, Piuri V (2003) A neural-network based control solution to air–fuel ratio control for automotive fuel-injection systems. IEEE Trans Syst Man Cyber-Part C: Appl Rev 33:259–268

    Google Scholar 

  2. Shiraishi H, Ipri LS, Cho D (1995) CMAC neural network controller for fuel injection systems. IEEE Trans Control Syst Technol 3:32–38

    Google Scholar 

  3. Manzie C, Palaniswami M, Ralph D, Watson H, Xiao Y (2002) Model predictive control of a fuel injection system using a radial basis function observer. ASME J Dyn Syst Meas Control 124:648–658

    Google Scholar 

  4. Wang SW, Yu DL, Gomm JB, Page GF, Douglas SS (2006) Adaptive neural network model based predictive control for air-fuel ratio of SI engines. Eng Appl Artif Intell 19:189–200

    Google Scholar 

  5. Hendricks E, Sorenson SC (1990) Mean value modelling of spark ignition engines. SAE technical paper no. 900616

  6. Chevalier A, Muller M, Hendricks E (2000) On the validity of mean value engine models during transient operations. SAE technical paper no. 2000-01-1261

  7. Hendricks E, Engler D, Fam M (2000) A generic mean value engine model for spark ignition engines. In: 41st simulation conference, SIMS 2000, DTU, Lyngby, Denmark

  8. Hendricks E (2001) Isothermal versus adiabatic mean value si engine models. In: 3rd IFAC workshop on advances in automotive control. Karlsruhe Germany

  9. Hendricks E, Chevalier A, Jensen M, Sorenson SC, Trumpy D, Asik J (1996) Modelling of the intake manifold filling dynamics, SAE technical paper no. 960037

  10. Hendricks E, Vesterholm T (1992) The analysis of mean value SI engine models, SAE technical paper no. 920682

  11. Hendricks E, Jensen M, Kaidantzis P, Rasmussen P, Vesterholm T (1993) Transient A/F ratio errors in conventional SI engine controllers, SAE technical paper no. 930856, in Special Publication SP-955

  12. Chevalier A, Vigild C, Hendricks E (2000) Predicting the port air mass flow of SI engines in air/fuel ratio control applications, SAE technical paper no. 2000-01-0260

  13. Berggren P, Perkovic A (1996) Cylinder individual lambda feedback control in an SI engine, Master’s Thesis. Linkopings University

  14. Nørgaard M, Ravn O, Poulsen NL, Hansen LK (2000) Neural networks for modelling and control of dynamic systems, Springer, ISBN 1-85233-227-1

  15. Lawrynczuk (2007) A family of model predictive control algorithms with artificial neural networks. Int J Appl Math Comput Sci 17(2):217–232

  16. Hassibi B, Stork DG, Wolff GJ (1993) Optimal brain surgeon and general network pruning. In: proceedings, international conference neural networks

  17. Arsie I, Pianese C, Sorrentino M (2006) A procedure to enhance identification of recurrent neural networks for simulating air–fuel ratio dynamics in SI engines. Eng Appl Artif Intell 19:65–77

    Google Scholar 

  18. Cutler R, Ramaker B (1980) Dynamic matrix control-a computer control algorithm. In: proceeding joint automatic control conference, San Francisco

  19. Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized predictive control-I. The basic algorithm. Automatica 23(2):137–148

    Google Scholar 

  20. Rao SS (2005) Engineering optimization. New Age International Publishers, ISBN: 81-224-1149-5

  21. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, ISBN 0-12-283952-8

  22. Ogata K (2006) Modern control engineering. Prentice Hall India, ISBN 81-203-2045-X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Saraswati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraswati, S., Chand, S. Online linearization-based neural predictive control of air–fuel ratio in SI engines with PID feedback correction scheme. Neural Comput & Applic 19, 919–933 (2010). https://doi.org/10.1007/s00521-010-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0419-z

Keywords

Navigation