Skip to main content
Log in

Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In previous adaptive neural network control schemes, neural networks are usually used as feedback compensators. So, only semi-globally uniformly ultimate boundedness of closed-loop systems can be guaranteed, and no methods are given to determine the neural network approximation domain. However, in this paper, it is showed that if neural networks are used as feedforward compensators instead of feedback ones, then we can ensure the globally uniformly ultimate boundedness of closed-loop systems and determine the neural network approximation domain via the bound of known reference signals. It should be pointed out that this domain is very important for designing the neural network structure, for example, it directly determines the choice of the centers of radial basis function neural networks. Simulation examples are given to illustrate the effectiveness of the proposed control approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis FL, Yesildirek A, Liu K (1996) Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 7(2):388–399

    Article  Google Scholar 

  2. Lewis FL, Jagannathan S, Yesilidrek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, Philadelphia

    Google Scholar 

  3. Ge SS, Lee TH, Harris CJ (1998) Adaptive neural network control of robot manipulators. World Scientific, London

    Google Scholar 

  4. Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Automat Control 41(3):447–451

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu YJ, Tong SC, Wang W (2009) Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst 160(19):2727–2754

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen W, Jiao L, Li J, Li R (2010) Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans Fuzzy Syst 18(4):674–685

    Article  Google Scholar 

  7. Choi JY, Stoev J, Farrell JA (2001) Adaptive observer backstepping control using neural networks. IEEE Trans Neural Netw 12(5):1103–1112

    Article  Google Scholar 

  8. Stoev J, Choi JY, Farrell J (2002) Adaptive control for output feedback nonlinear systems in the presence of modeling errors. Automatica 38(10):1761–1767

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen WS (2009) Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theory Appl 3(10):1383–1394

    Article  MathSciNet  Google Scholar 

  10. Chen W, Tian YP (2009) Neural network approximation for periodically disturbed functions and applications to control design. Neurocomputing 72(16–18):3891–3900

    Article  Google Scholar 

  11. Zhang T, Ge SS, Hang CC (2000) Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12):1835–1846

    MathSciNet  MATH  Google Scholar 

  12. Chen W, Jiao L (2010) Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Trans Neural Netw 21(2):345–351

    Article  Google Scholar 

  13. Li J, Chen W, Li JM (2010) Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int J Robust Nonlinear Control. doi:10.1002/rnc.1609

  14. Chen W, Li W, Miao Q (2010) Backstepping control for periodically time-varying systems using high-order neural network and Fourier series expansion. ISA Trans 49(3):283–292

    Article  Google Scholar 

  15. Wang C, Hill DJ, Ge SS, Chen GR (2006) An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica 42(5):723–731

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen W, Li J (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern Part B 38(1):258–266

    Article  Google Scholar 

  17. Chen W, Jiao L, Li J, Li R (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern Part B 40(3):939–950

    Article  Google Scholar 

  18. Ge SS, Hong F, Lee TH (2003) Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Trans Automat Control 48(11):2004–2010

    Article  MathSciNet  Google Scholar 

  19. Ge SS, Hong F, Lee TH (2004) Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans Syst Man Cybern Part B 34(1):499–516

    Article  MathSciNet  Google Scholar 

  20. Ho DWC, Li J, Niu Y (2005) Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Trans Neural Netw 16(3):625–635

    Article  Google Scholar 

  21. Hua C, Guan X, Shi P (2007) Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Trans Neural Netw 18(2):495–505

    Article  Google Scholar 

  22. Hua C, Guan X (2008) Output feedback stabilization for time-delay nonlinear interconnected systems using neural networks. IEEE Trans Neural Netw 19(4):673–688

    Article  MathSciNet  Google Scholar 

  23. Yoo SJ, Park JB (2009) Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans Syst Man Cybern Part B 39(5):1316–1323

    Article  Google Scholar 

  24. Chen B, Liu X, Liu K, Lin C (2009) Novel adaptive neural control design for nonlinear mimo time-delay systems. Automatica 45(6):1554–1560

    Google Scholar 

  25. Ge SS, Li GY, Lee TH (2009) Adaptive NN control for strict-feedback discrete-time nonlinear systems. Automatica 39(5):807–819

    Article  MathSciNet  Google Scholar 

  26. Ge SS, Li GY, Lee TH (2003) Adaptive NN control for a class of discrete-time nonlinear systems. Int J Control 76(4):334–354

    Article  MathSciNet  MATH  Google Scholar 

  27. Ge SS, Zhang J, Lee TH (2004) Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time. IEEE Trans Syst Man Cybern Part B 34(4):1630–1645

    Article  Google Scholar 

  28. Zhang J, Ge SS, Lee TH (2005) Output feedback control of a class of discrete MIMO nonlinear systems with triangular form inputs. IEEE Trans Neural Netw 16(6):1491–1503

    Article  Google Scholar 

  29. Alanis AY, Sanchez EN, Loukianov AG (2007) Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Trans Neural Netw 18(4):1185–1195

    Article  Google Scholar 

  30. Chen W (2009) Comments on ‘Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Trans Neural Netw 20(5):897–898

    Article  Google Scholar 

  31. Chen W (2009) Adaptive nn control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constrains. ISA Trans 48(3):304–311

    Article  Google Scholar 

  32. Yang C, Ce SS, Xiang C, Chai T, Lee TH (2008) Output feedback nn control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans Neural Netw 19(11):1873–1886

    Article  Google Scholar 

  33. Yang C, Ge SS, Lee TH (2009) Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automatica 45(1):270–276

    Article  MathSciNet  MATH  Google Scholar 

  34. Vance J, Jagannathan S (2008) Discrete-time neural network output feedback control of nonlinear discrete-time systems in non-strict form. Automatica 44(4):1020–1027

    Article  MathSciNet  Google Scholar 

  35. Jagannathan S (2006) Neural network control of nonlinear discrete-time systems. CRC Press, Boca Raton

    MATH  Google Scholar 

  36. Jagannathan S, Lewis FL (1996) Discrete-time neural net controller for a class of nonlinear dynamical systems. IEEE Trans Automat Control 41(10):1693–1699

    Article  MathSciNet  MATH  Google Scholar 

  37. Jagannathan S (2001) Control of a class of nonlinear discrete-time system using multilayer neural networks. IEEE Trans Neural Netw 12(5):1113–1120

    Article  MathSciNet  Google Scholar 

  38. Jagannathan S, He P (2008) Neural-network-based state-feedback control of a nonlinear discrete-time system in nonstrict feedback form. IEEE Trans Neural Netw 19(12):2073–2087

    Article  Google Scholar 

  39. Chen FC, Khalil HK (1995) Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Trans Automat Control 72(5):791–807

    Article  MathSciNet  Google Scholar 

  40. Ge SS, Huang CC, Lee TH, Zhang T (2001) Stable adaptive neural network control. Kluwer Academic, Norwell

    Google Scholar 

  41. Ren X, Lewis FL, Zhang J (2009) Neural network compensation control for mechanical systems with disturbances. Automatica 45(6):1221–1226

    Google Scholar 

  42. Herrmann G, Lewis FL, Zhang J (2009) Discrete adaptive neural network disturbance feedforward compensation for non-linear disturbances in servo-control applications. Int J Control 82(4):721–740

    Article  MathSciNet  MATH  Google Scholar 

  43. Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments that improve the quality of the paper. This work was supported by the National Natural Science Foundation of P. R. China (60804021, 61072106, 61072139, 61001202), the Fundamental Research Funds for the Central Universities (JY10000970001), and the China Postdoctoral Science Foundation funded project (20090461282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Jiao, L.C. & Wu, J. Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput & Applic 21, 351–363 (2012). https://doi.org/10.1007/s00521-010-0455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0455-8

Keywords

Navigation