Skip to main content
Log in

Two-stage neural sliding-mode control of magnetic levitation in minimal invasive surgery

  • ISNN 2010
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A levitation platform can be inserted into a patient’s abdominal cavity to perform diagnosis or a surgery procedure with a significantly reduced level of incision and an enhanced field of vision and operation. This paper proposes a new controller for the magnetic levitation, which connects the neural control (NC) and the sliding-mode control (SMC) serially, while the other neural sliding-mode controllers (NSMC) combine NC and SMC parallel. We call the new NSMC as two-stage neural sliding control. It has less chattering during its discrete realization and ensures finite-time convergence. Real-time experiments for a prototype of magnetic levitation in minimal invasion surgery are presented. The comparisons with other regular controllers, such as PID, NC, SMC, and normal NSMC, are made by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behera L, Chaudhury S, Gopal M (1996) Neuro adaptive hybrid for robot manipulator tracking control. IEE Proc Control Theory Appl 43(3):270–275

    Article  Google Scholar 

  2. Berkelman PJ, Hollis RL (2000) Lorentz magnetic levitation for haptic interaction: device design, function, and integration with simulated environments. Int J Robot Res 9(7):644–667

    Article  Google Scholar 

  3. Dawson D, Qu Z, Bridge M (1991) Hybrid adaptive control for the tracking of rigid-link flexible-joint robots. In: Modelling and control of compliant and rigid motion systems, 1991 ASME Winter Annual Meeting, Atlanta GA, pp 95–98

  4. Davila J, Fridman L, Levant A (2005) Second-order sliding mode observer for mechanical systems. IEEE Trans Automat Control 50(11):1785–1789

    Article  MathSciNet  Google Scholar 

  5. Geim AK, Simon MD, Boamfa MI, Heflinger LO (1999) Magnet levitation at your fingertips. Nature 400:323–324

    Article  Google Scholar 

  6. Kelly R (1998) Global positioning on robot manipulators via PD control plus a classs of nonlinear integral actions. IEEE Trans Automat Control 43(7):934–938

    Article  MathSciNet  Google Scholar 

  7. Khemaissa S, Moris AS (1993) Neuro adaptive control of robotic manipulator. Robotica 11:465–473

    Article  Google Scholar 

  8. Lewis FL, Yesildirek A, Liu K (1996) Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans Neural Netw 7(2):388–399

    Article  Google Scholar 

  9. Lewis FL (1996) Neural network control of robot manipulators. IEEE Exp 11(2):64–75

    Article  Google Scholar 

  10. Levant A (1998) Robust exact differentiator via sliding mode technique. Automatica 34(3):379–384

    Article  MathSciNet  Google Scholar 

  11. Lin F, Brandt RD (1996) An optimal control approach to robust control of robot manipulators. IEEE Trans Robot Automat 14(1):69–77

    Google Scholar 

  12. Man Z, Palaniswami M (1994) Robust tracking control for rigid robotic manipulator. IEEE Trans Automat Control 39(1):154–159

    Article  MathSciNet  Google Scholar 

  13. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice Hall, Englewood Cliffs, p 07632

  14. Acho AL, Orlov Y (2000) An invariance principle for discontinuous dynamic systems with application to a Coulomb friction oscillator. ASME J Dyn Syst Measure Control 122:687–690

    Article  Google Scholar 

  15. Ortega R, Spong MW (1989) Adaptive motion control of rigid robots: a tutorial. Automatica 877–888

  16. Rovithakis GA, Christodoulou MA (1995) Direct adaptive regulation of unknown nonlinear dynamical system via dynamical neural networks. IEEE Trans Syst Man Cybern 25:1578–1594

    Article  Google Scholar 

  17. Zhihua Q, Dawson DM (1996) Robust tracking control of robot manipulators. IEEE Press, New York

    Google Scholar 

  18. Singh SN (1985) Adaptive model-following control of nonlinear robotic systems. IEEE Trans Automat Control 30:1099–1100

    Article  Google Scholar 

  19. Slotine JE, Lin W (1988) Adaptive manipulator control: a case study. IEEE Trans Automat Control 33:995–1003

    Article  Google Scholar 

  20. Willems JC (1971) Least squares optimal control and algebraic Riccati equations. IEEE Trans Automat Control 16:621–634

    Article  MathSciNet  Google Scholar 

  21. Yu W, Poznyak AS (1999) Indirect adaptive control via parallel dynamic neural networks. IEE Proc Control Theory Appl 146(1):25–30

    Article  Google Scholar 

  22. Yu W, Poznyak AS, Xiaoou Li (2001) Multilayer dynamic neural networks for nonlinear system on-line identification. Int J Control 74(18):1858–1864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Francisco, P.C. & Li, X. Two-stage neural sliding-mode control of magnetic levitation in minimal invasive surgery. Neural Comput & Applic 20, 1141–1147 (2011). https://doi.org/10.1007/s00521-010-0477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0477-2

Keywords

Navigation