Skip to main content
Log in

Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

To solve the problem of over-reliance on a priori assumptions of the parametric methods for finite mixture models and the problem that monic Chebyshev orthogonal polynomials can only process the gray images, a segmentation method of mixture models of multivariate Chebyshev orthogonal polynomials for color image was proposed in this paper. First, the multivariate Chebyshev orthogonal polynomials are derived by the Fourier analysis and tensor product theory, and the nonparametric mixture models of multivariate orthogonal polynomials are proposed. And the mean integrated squared error is used to estimate the smoothing parameter for each model. Second, to resolve the problem of the estimation of the number of density mixture components, the stochastic nonparametric expectation maximum algorithm is used to estimate the orthogonal polynomial coefficient and weight of each model. This method does not require any prior assumptions on the models, and it can effectively overcome the problem of model mismatch. Experimental performance on real benchmark images shows that the proposed method performs well in a wide variety of empirical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng H, Chen C, Chiu H et al (1998) Fuzzy homogeneity approach to multilevel thresholding. IEEE Trans Image Process 7(7):1084–1086

    Article  Google Scholar 

  2. Cheng HD, Jiang XH, Wang J (2002) Colour image segmentation based on homogram thresholding and region merging. Pattern Recognit 35(2):373–393

    Article  MATH  Google Scholar 

  3. Otsu N (1979) A threshold selection method from grey-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  4. Saha P, Udupa J (2002) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 23(5):689–706

    Google Scholar 

  5. Basak J, Chanda B, Majumder DD (1994) On edge and line linking with connectionist models. IEEE Trans Syst Man Cybern 24(3):413–428

    Article  Google Scholar 

  6. Shih FY, Cheng S (2004) Adaptive mathematical morphology for edge linking. Inf Sci 167(1–4):9–21

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  8. Hojjatoleslami SA, Kittler J (1998) Region growing: a new approach. IEEE Trans Image Process 7(7):1079–1084

    Article  Google Scholar 

  9. Tremeau A, Borel N (1997) A region growing and merging algorithm to colour segmentation. Pattern Recognit 30(7):1191–1203

    Article  Google Scholar 

  10. Ikonomakis N, Plataniotis KN, Zervakis M et al (1997) Region growing and region merging image segmentation. Proc IEEE Conf Digit Signal Process 1:299–302

    Google Scholar 

  11. Murtagh F, Raftery AE, Starck JL (2005) Bayesian inference for multiband image segmentation via model-based cluster trees. Image Vis Comput 23:596–597

    Article  Google Scholar 

  12. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

    Article  MathSciNet  MATH  Google Scholar 

  13. Titterington DM (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    MATH  Google Scholar 

  14. Marin JM, Mengersen K, Robert CP (2005) Bayesian modelling and inference on mixtures of distributions. In: Handbook of statistics, vol 25, pp 459–507

  15. McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  16. da Silva F (2009) Bayesian mixture models of variable dimension for image segmentation. Comput Methods Programs Biomed 94(1):1–14

    Article  Google Scholar 

  17. Veeberk JJ, Vlassis N, Klose B (2001) Greedy gaussian mixture model learning for texture image segmentation. In: Proceedings of the workshop on kernel and subspace methods for computer vision, pp 37–46

  18. Zhang K, Kwok JT (2010) Simplifying mixture models through function approximation. IEEE Trans Neural Netw 21(4):644–658

    Article  Google Scholar 

  19. Joshi N, Brady M (2010) Non-parametric mixture model based evolution of level sets and application to medical images. Int J Comput Vis 88(1):52–68

    Article  Google Scholar 

  20. Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10(4):339–348

    Article  Google Scholar 

  21. Tsung IL, Jack CL (2007) Robust mixture modeling using the skew t distribution. Stat Comput 17(2):81–92

    Article  MathSciNet  Google Scholar 

  22. Bouguila N, Ziou D, Vaillancourt J (2004) Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application. IEEE Trans Image Process 13(11):1533–1543

    Article  Google Scholar 

  23. Fan S (2008) Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling. Neurocomputing 72(1–3):500–512

    Article  Google Scholar 

  24. Zribi M, Ghorbel F (2003) An unsupervised and non-parametric Bayesian classifier. Pattern Recognit Lett 24:97–112

    Article  MATH  Google Scholar 

  25. Zribi M, Ghorbel F (2007) Unsupervised Bayesian image segmentation using orthogonal series. J Vis Commun Image Represent 18(6):496–503

    Article  Google Scholar 

  26. Koornwinder T (1974) Orthogonal polynomials in two variables which are eigenfunctions of the two algebraically independent partial differential operators. Nederl Acad Wetensch Proc Ser A77, 36:357–381

    Google Scholar 

  27. Koornwinder T (1975) Two-variable analogues of the classical orthogonal polynomials. In: Askey RA (ed) Theory and applications of special functions. Academic Press, New York, pp 435–495

    Google Scholar 

  28. Dunkl CF, Xu Y (2001) Orthogonal polynomials of several variables. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  29. Suetin PK (1999) Orthogonal polynomials in two variables (trans: the 1988 Russian original by Panklatiev EV). Gordon and Breach, Amsterdam

  30. Caillol H, Pieczynski W, Hillion A (1997) Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation. IEEE Trans Image Process 6:425–440

    Article  Google Scholar 

  31. Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26:195–239

    Article  MathSciNet  MATH  Google Scholar 

  32. Masson P, Pieczynski W (1993) SEM algorithm and unsupervised statistical segmentation of satellite images. IEEE Trans Geosci Remote Sens 31:618–633

    Article  Google Scholar 

  33. Braathen B, Pieczynski W, Masson P (1993) Global and local methods of unsupervised Bayesian segmentation of images. Mach Graph Vis 2:39–52

    Google Scholar 

  34. Zhang YJ (1997) Evaluation and comparison of different segmentation algorithms. Pattern Recognit Lett 18:963–974

    Article  Google Scholar 

  35. Dempester AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B39:1–38

    Google Scholar 

  36. Tang H, Dillenseger JL, Bao XD (2009) A vectorial image soft segmentation method based on neighborhood weighted Gaussian mixture model. Comput Med Imaging Graph 33(8):644–650

    Article  Google Scholar 

  37. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu YA (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892

    Article  Google Scholar 

  38. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  39. Scott DW (1992) Multivariate density estimation: theory, practice, visualization. Wiley, New York

    Book  Google Scholar 

  40. Gehringer K (1990) Nonparametric probability density estimation using normalized b-splines. Master’s Thesis, The University of Tulsa

  41. Cencov NN (1962) Evaluation of an unknown distribution density from observations. Sov Math 3:1559–1562

    Google Scholar 

  42. Koornwinder T (1975) Two-variable analogues of the classical orthogonal polynomials. In: Askey RA (ed) Theory and applications of special functions. Academic Press, New York

    Google Scholar 

  43. Sun JC (2008) A new class of three-variable orthogonal polynomials and their recurrences relations. Sci China Ser A Math 51(6):1071–1092

    Article  MATH  Google Scholar 

  44. Sun JC, Li H (2005) Generalized Fourier transform on an arbitrary triangular doman. Adv Comput Math 22:223–248

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun JC (2006) Multivariate Fourier transform methods over simplex and super-simplex domains. J Comput Math 24:55–66

    Google Scholar 

  46. Sun JC (2006) Approximate eigen-decomposition preconditioners for solving numerical PDE problems. Appl Math Comput 172:772–787

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun JC (2002) Generalized Fourier transforms over parallel dodecahedron domains. Ann RDCPS 04-01:18–25

    Google Scholar 

  48. Asmar NH (2004) Partial differential equations with Fourier series and boundary value problems, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  49. Fowlkes C, Martin D, Malik J The Berkeley segmentation dataset and benchmark (BSDB). www.cs.berkeley.edu/projects/vision/grouping/segbench/

  50. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  51. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

    Article  Google Scholar 

  52. Zhang H, Jason E, Fritts B, Sally A (2008) GoldmanImage segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Sun Jiachang and the referees for their helpful comments and suggestions to improve the presentation of this paper. This work was supported by the National Science Foundation of China under Grant No. 60841003, the Special Fund of Software and Integrated Circuit Foundation of Jiangsu Information Industry of China (2009[100]) and the Innovation Fund of PhD candidate in Jiangsu Province of China(CX10B_274Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qing Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Song, YQ., Chen, JM. et al. Color image segmentation using nonparametric mixture models with multivariate orthogonal polynomials. Neural Comput & Applic 21, 801–811 (2012). https://doi.org/10.1007/s00521-011-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0538-1

Keywords

Navigation