Skip to main content
Log in

Guaranteed cost synchronous control of time-varying delay cellular neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the synchronization of time-varying delay cellular neural networks. Based on the Lyapunov stability analysis and the zoned discussion and maximax synthesis (ZDMS) method, the quadratic matrix inequality (QMI) criterion for the guaranteed cost synchronous controller is designed to synchronize the given chaotic systems. For the convenience to solve, using a generalized result of Schur complement, the criterion in the form of QMI is turned into the linear matrix inequality (LMI) form, which can be used efficiently via existing numerical convex optimization algorithms such as the interior-point algorithms for solving LMIs. The minimization of the guaranteed cost is further studied, and the corresponding LMI criterion for getting the controller is given. Finally, numerical examples are given to show the effectiveness of proposed guaranteed cost synchronous control and its corresponding minimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Z, Sun J, Oh S (2009) Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels. Automatica 45(7):1649–1658

    Article  MathSciNet  MATH  Google Scholar 

  2. O’Brien JF (2009) Multi-path nonlinear dynamic compensation for rudder roll stabilization. Control Eng Pract 17(12):1405–1414

    Article  Google Scholar 

  3. Brieger O, Kerr M, Leißling D, Postlethwaite I, Sofrony J, Turner MC (2009) Flight testing of a rate saturation compensation scheme on the ATTAS aircraft. Aerosp Sci Technol 13(2–3):92–104

    Article  Google Scholar 

  4. Indiveri G, Paulus J, Plöger PG (2007) Motion control of Swedish wheeled mobile robots in the presence of actuator saturation. Lect Notes Comput Sci 4434:35–46

    Article  Google Scholar 

  5. Pedra J, Candela I, Barrera A (2009) Saturation model for squirrel-cage induction motors. Electric Power Syst Res 79(7):1054–1061

    Article  Google Scholar 

  6. Loboda V, Lapusta Y, Sheveleva A (2010) Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int J Solids Struct 47(14–15):1795–1806

    Article  MATH  Google Scholar 

  7. Faldin N, Morzhov A, Boiko I (2009) Analysis of periodic motions in relay feedback systems with saturation in plant dynamics. Int J Syst Sci 40(6):659–668

    Article  MathSciNet  Google Scholar 

  8. Ponce FJM, Gómez FMF (2010) Stability, bifurcations and response analysis of time delay control system with initial conditions and saturation effects. In: 18th Mediterranean conference on control & automation, MED2010, Marrakech, June 2010, pp 987–992

  9. Corsellas AG (2008/2009) Virtual orbits and two-parameter bifurcation analysis in power electronic converters [D]. Enginyeria de Sistemes, Universitat Politècnica de catalunya/Automàtica i Informàtica Industrial

  10. Salarieh H (2007) Nonlinear feedback control of chaotic pendulum in presence of saturation effect. Chaos Solitons Fractals 31(2):292–304

    Article  MathSciNet  MATH  Google Scholar 

  11. Zeng ZG, Wang J (2007) Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays. Neural Comput 19(8):2149–2182

    Article  MathSciNet  MATH  Google Scholar 

  12. Zeng ZG, Jun W (2009) Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw 22(5–6):651–657

    Article  Google Scholar 

  13. Li N, Lu HX (2008) Single-electron tunneling depressing synapse for cellular neural networks. Neural Comput Appl 17(2):111–118

    Article  Google Scholar 

  14. Su TJ, Huang MY, Hou CL, Lin YJ (2010) Cellular neural networks for gray image noise cancellation based on a hybrid linear matrix inequality and particle swarm optimization approach. Neural Process Lett 32(2):147–165

    Article  Google Scholar 

  15. Leine RI, van Campen DH (2006) Bifurcation phenomena in non-smooth dynamical systems. Eur J Mech A/Solids 25(4):595–616

    Article  MathSciNet  MATH  Google Scholar 

  16. Leine RI (2006) Bifurcations of equilibria in non-smooth continuous systems. Physica D: Onlinear Phenomena 223(1):121–137

    Article  MathSciNet  MATH  Google Scholar 

  17. Leine RI, van de Wouw N (2008) Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Hu T, Teel AR (2006) Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans Automat Contr 51(11):1770–1786

    Article  MathSciNet  Google Scholar 

  19. Dai D, Hu T, Teel AR (2007) Analysis of systems with saturation/deadzone via piecewise–quadratic Lyapunov functions. In: American control conference, ACC2007, New York, pp 5822–5827

  20. Zhang LX, Boukas EK, Haidar A (2008) Delay-range-dependent control synthesis for time-delay systems with actuator saturation. Automatica 44(10):2691–2695

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi T, Su HY, Chu J (2010) On stability and stabilization for uncertain stochastic systems with time-delay and actuator saturation. Int J Syst Sci 41(5):501–509

    Article  MathSciNet  Google Scholar 

  22. Kao YG, Gao CC (2008) Global exponential stability analysis for cellular neural networks with variable coefficients and delays. Neural Comput Appl 17(3):291–295

    Article  MathSciNet  Google Scholar 

  23. Yakoubi K, Chitour Y (2007) Linear systems subject to input saturation and time delay: global asymptotic stabilization. IEEE Trans Automat Contr 52(5):874–879

    Article  MathSciNet  Google Scholar 

  24. Xin H, Gan D, Qiu J (2008) Stability analysis of linear dynamical systems with saturation nonlinearities and a short time delay. Phys Lett A 372(22):3999–4009

    Article  MathSciNet  MATH  Google Scholar 

  25. Fang HJ, Lin ZL, Shamash Y (2006) Disturbance tolerance and rejection of linear systems with imprecise knowledge of actuator input output characteristics. Automatica 42(9):1523–1530

    Article  MathSciNet  MATH  Google Scholar 

  26. Kebriaei H, Yazdanpanah MJ (2010) Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity. Commun Nonlinear Sci Numer Simul 15(2):430–441

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang K, Teng ZD, Jiang HJ (2010) Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions. Math Comput Model 52(1–2):12–24

    Article  MathSciNet  MATH  Google Scholar 

  28. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  29. Fliegner T, Logemann H, Ryan EP (2003) Low-gain integral control of continuous-time linear systems subject to input and output nonlinearities. Automatica 39(3):455–462

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan Y, Jiang ZP, Zhang H (2006) Network flow control under capacity constraints: a case study. Syst Control Lett 55(8):681–688

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu TS, Lin ZL, Chen BM (2002) An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2):351–359

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 60974136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, J., He, H. & Xiong, P. Guaranteed cost synchronous control of time-varying delay cellular neural networks. Neural Comput & Applic 22, 103–110 (2013). https://doi.org/10.1007/s00521-011-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0667-6

Keywords

Navigation