Skip to main content
Log in

Inverse optimality in the class of Hopfield neural networks with input nonlinearity

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents the chaos suppression problem in the class of Hopfield neural networks (HNNs) with input nonlinearity using inverse optimality approach. Using the inverse optimality technique and based on Lyapunov stability theory, a stabilizing control law, which is optimal with respect to meaningful cost functional, is determined to achieve global asymptotically stability in the closed-loop system. Numerical simulation is performed on a four-dimensional hyper-chaotic HNN to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yuan Y (2007) Dynamics in a delayed-neural network. Chaos Solitons Fractals 33:443–454

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng CJ (2008) Robust control of a class of neural networks with bounded uncertainties and time-varying delays. Comput Math Appl 56:1245–1254

    Article  MathSciNet  MATH  Google Scholar 

  3. Lu JG, Chen G (2009) Global asymptotical synchronization of chaotic neural networks by output feedback impulsive control: an LMI approach. Chaos Solitons Fractals 41:2293–2300

    Article  MathSciNet  MATH  Google Scholar 

  4. Wena UP, Lan KM, Shih HS (2009) A review of Hopfield neural networks for solving mathematical programming problems. Eur J Oper Res 198:675–687

    Article  Google Scholar 

  5. Singh V (2010) New LMI-based criteria for global robust stability of delayed neural networks. Appl Math Model 34:2958–2965

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang XS, Yuan Q (2005) Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69:232–241

    Article  Google Scholar 

  7. Yanga D, Hu C (2009) Novel delay-dependent global asymptotic stability condition of Hopfield neural networks with delays. Comput Math Appl 57:1978–1984

    Article  MathSciNet  Google Scholar 

  8. Jiang Y, Yang B, Wang J, Shao C (2009) Delay-dependent stability criterion for delayed Hopfield neural networks. Chaos Solitons Fractals 39:2133–2137

    Article  MathSciNet  MATH  Google Scholar 

  9. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrol TL, Pecora LM (1991) Synchronizing chaotic circuits. IEEE Trans Circuits Syst 38:453–456

    Article  Google Scholar 

  11. Rafikov M, Balthazar JM (2004) On an optimal control design for Rösler system. Phys Lett A 333:241–245

    Article  MathSciNet  MATH  Google Scholar 

  12. Yan JJ (2004) Design of robust controllers for uncertain chaotic systems with nonlinear inputs. Chaos Solitons Fractals 19:541–547

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen SH, Lu J (2002) Parameter identification and synchronization of chaotic systems based upon adaptive control. Chaos Solitons Fractals 14:643–647

    Article  MATH  Google Scholar 

  14. Mou C, Chang-sheng J, Bin J, Qing-xian W (2009) Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos Solitons Fractals 39:1856–1863

    Article  MATH  Google Scholar 

  15. Yassen MT (2002) The optimal control of Chen chaotic dynamical system. Appl Math Comput 131:171–180

    Article  MathSciNet  MATH  Google Scholar 

  16. Glad T (1987) Robustness of nonlinear state feedback: a survey. Automatica 23:425–435

    Article  MATH  Google Scholar 

  17. Sepulchre R, Jankovic M, Kokotovic P (1996) Constructive nonlinear control. Springer, Berlin

    Google Scholar 

  18. Curtis JW, Beard RW (2004) Satisficing: a new approach to constructive nonlinear control. IEEE Trans Automat Contr 49:1090–1102

    Article  MathSciNet  Google Scholar 

  19. Fuh CC (2009) Optimal control of chaotic systems with input saturation using an input-state linearization scheme. Commun Nonlinear Sci Numer Simul 14:3424–3431

    Article  Google Scholar 

  20. Hamzi B (2001) Some results on inverse optimality based designs. Syst Control Lett 43:239–246

    Article  MathSciNet  MATH  Google Scholar 

  21. Magni L, Sepulchre R (1997) Stability margins of nonlinear receding-horizon control via inverse optimality. Syst Control Lett 32:241–245

    Article  MathSciNet  MATH  Google Scholar 

  22. Krstic M (2008) Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. Automatica 44:2930–2935

    Article  MathSciNet  MATH  Google Scholar 

  23. Li WQ, Xie XJ (2009) Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable. Automatica 45:498–503

    Article  MathSciNet  MATH  Google Scholar 

  24. Qu Z, Wang J, Hull RA, Martin J (2009) Continuous and inverse optimal control designs for chained systems: a global state-scaling transformation and a time-scaling method. Optim Control Appl Methods 30:1–25

    Article  MathSciNet  Google Scholar 

  25. Huang WZ, Huang Y (2008) Chaos of a new class of Hopfield neural networks. Appl Math Comput 206:1–11

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang Y, Yang XS (2006) Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing 69:1787–1795

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Farid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, Y., Bigdeli, N. Inverse optimality in the class of Hopfield neural networks with input nonlinearity. Neural Comput & Applic 22, 711–717 (2013). https://doi.org/10.1007/s00521-011-0756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0756-6

Keywords

Navigation