Skip to main content
Log in

Robust minimum class variance twin support vector machine classifier

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The recently proposed twin support vector machine (TWSVM) obtains much faster training speed and comparable performance than classical support vector machine. However, it only considers the empirical risk minimization principle, which leads to poor generalization for real-world applications. In this paper, we formulate a robust minimum class variance twin support vector machine (RMCV-TWSVM). RMCV-TWSVM effectively overcomes the shortcoming in TWSVM by introducing a pair of uncertain class variance matrices in its objective functions. As a special case, we present a special type of the uncertain class variance matrices by combining the empirical positive and negative class variance matrices. Computational results on several synthetic as well as benchmark datasets indicate the significant advantages of proposed classifier in both computational time and test accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vapnik VN (1995) The natural of statistical learning theory. Springer, New York

    Google Scholar 

  2. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  3. Osuna E, Freund R, Girosi F (1997) Training support vector machines: An application to face detection. In: Proceedings of IEEE computer vision and pattern recognition, San Juan, Puerto Rico, pp 130–136

  4. Joachims T, Ndellec C, Rouveriol C (1998) Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning No. 10, Chemnitz, Germany, vol. 1398, pp 137–142

  5. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D (2000) Knowledge-based analysis of microarray gene expression data by using support vector machine. Proc Natl Acad Sci 97(1):262–267

    Google Scholar 

  6. Ebrahimi T, Garcia GN, Vesin JM (2003) Joint time-frequency-space classification of EEG in a brain-computer interface application. EURASIP J Appl Signal Process 1(7):713–729

    Google Scholar 

  7. Mukherjee S, Osuna E, Girosi F (1997) Nonlinear prediction of chaotic time series using a support vector machine. In: Proceedings of the 1997 IEEE workshop, Amelia Island, FL, pp 511–520

  8. Saitoh S (1988) Theory of reproducing kernels and its applications. Longman Scientific & Technical, Harlow

    MATH  Google Scholar 

  9. Williamson RC, Smola AJ, Schölkopf B (2001) Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Trans Inf Theory 47(6):2516–2532

    Article  MATH  Google Scholar 

  10. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  11. Osuna E, Freund R, Girosi F (1997) An improved training algorithm for support vector machines. In: Proceedings of the IEEE workshop on neural networks for signal processing, Amelia Island, FL, USA, pp 276–285

  12. Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel methods–support vector learning. MIT Press, Cambridge, MA, pp 185–2008

  13. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2000) A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans Neural Netw 11(1):124–136

    Article  Google Scholar 

  14. Tao Q, Wu GW, Wang J (2004) A generalized S-K algorithm for learning ν-SVM classifiers. Pattern Recogn Lett 25(10):1165–1171

    Article  Google Scholar 

  15. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  Google Scholar 

  16. Suykens JAK, Lukas L, Van Dooren P, Moor BD, Vandewalle J (1999) Least squares support vector machine classifiers: a large scale algorithm. In: Processings of European conference circuit theory design, pp 839–842

  17. Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-norm support vector machines. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems, MIT Press, Cambridge, MA

    Google Scholar 

  18. Lin C-F, Wang S-D (2003) Fuzzy support vector machines. IEEE Trans Neural Netw 13(2):464–471

    Google Scholar 

  19. Tsang IW, Kwok JT, Cheung P-M (2005) Core vector machines: fast SVM training on very large data sets. J Mach Learn Res 6:363–392

    MathSciNet  MATH  Google Scholar 

  20. Tsang IW, Kocsor A, Kwok JT (2007) Simpler core vector machines with enclosing balls. In: Proceedings of the 24th international conference on machine learning. Corvallis, OR

  21. Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  22. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

  23. Shao Y, Zhang C, Wang X, Deng N (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968

    Article  Google Scholar 

  24. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543

    Article  Google Scholar 

  25. Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recogn Lett 29:1842–1848

    Article  Google Scholar 

  26. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89(4):510–522

    Article  MATH  Google Scholar 

  27. Ghorai S, Dutta PK, Mukherjee A (2010) Newton’s method for nonparallel plane proximal classifier with unity norm hyperplanes. Signal Process 90(1):93–104

    Article  MATH  Google Scholar 

  28. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    Article  Google Scholar 

  29. Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16-18):2846–2858

    Article  Google Scholar 

  30. Fukunaga K (1990) Statistical pattern recognition. Academic, San Diego, CA

    MATH  Google Scholar 

  31. Tefas A, Kotropoulos C, Pitas I (2001) Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Trans Pattern Anal Mach Intell 23(7):735–746

    Article  Google Scholar 

  32. Mika S, Ratsch G, Weston J, Schölkopf B, Smola A, Muller K-R (2003) Constructing descriptive and discriminative nonlinear features: Ayleigh coefficients in Kernel feature spaces. IEEE Trans Pattern Anal Mach Intell 25(5):623–628

    Article  Google Scholar 

  33. Muller K-R, Mika S, Ratsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201

    Article  Google Scholar 

  34. Zafeiriou S, Tefas A, Pitas I (2007) Minimum class variance support vector machines. IEEE Trans Image Process 16(10):2551–2564

    Article  MathSciNet  Google Scholar 

  35. Fung G, Mangasarian OL (2001) Proximal support vector machines. In: Proceedings of KDD-2001, San Francisco, pp 77–86

  36. Lanckriet G, El Ghaoui L, Bhattacharyya C, Jordan M (2002) A robust minimax approach to classification. J Mach Learn Res 3:555–582

    MathSciNet  Google Scholar 

  37. Blake CI, Merz CJ (1998) UCI repository for machine learning databases. University of California, Department of Information and Computer Sciences, Irvine, CA. On-line at: http://www.ics.uci.edu/mlearn/MLRepository.html

  38. MATLAB, On-line at: http://www.mathworks.com

Download references

Acknowledgments

This work has been partly supported by the Innovative Project of Shanghai Municipal Education Commission (11YZ81), the foundation of SHNU (SK201204), and the Shanghai Leading Academic Discipline Project (S30405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Xu, D. Robust minimum class variance twin support vector machine classifier. Neural Comput & Applic 22, 999–1011 (2013). https://doi.org/10.1007/s00521-011-0791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0791-3

Keywords

Navigation