Skip to main content
Log in

Robust passivity analysis of a class of discrete-time stochastic neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the passivity problem of a class of discrete-time stochastic neural networks with time-varying delays and norm-bounded parameter uncertainties. New delay-dependent passivity conditions are obtained by using a novel Lyapunov functional together with the linear matrix inequality approach. Numerical examples show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arik S (2002) Global asymptotic stability of a large class of delayed cellular neural networks with constant delay. Phys Lett A 311:504–511

    Article  MathSciNet  Google Scholar 

  2. Balasubramaniam P, Nagamani G (2011) A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay. Neurocomputing 74:1646–1653

    Article  Google Scholar 

  3. Cao J (2001) Global stability conditions for delayed CNNs. IEEE Trans Circuits Syst I 48:1330–1333

    Article  MATH  Google Scholar 

  4. Cao J, Wang J (2005) Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans Circuits Syst I 52:417–426

    Article  MathSciNet  Google Scholar 

  5. Chen B, Li H, Lin C, Zhou Q (2009) Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys Lett A 373:1242–1248

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen W, Lu X (2008) Mean square exponential stability of uncertain stochastic delayed neural networks. Phys Lett A 372:1061–1069

    Article  MathSciNet  MATH  Google Scholar 

  7. Farrell J, Michel A (1990) A synthesis procedure for Hopfield’s continuous-time associative memory. IEEE Trans Circuits Syst I 37:877–884

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu J, Zhang H, Ma T, Zhang Q (2010) On passivity analysis for stochastic neural networks with interval time-varying delay. Neurocomputing 73:795–801

    Article  Google Scholar 

  9. He Y, Liu G, Rees D (2007) New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Trans Neural Netw 18:310–314

    Article  Google Scholar 

  10. Huang H, Cao J (2007) Exponential stability analysis of uncertain stochastic neural networks with multiple delays. Nonlinear Anal Real World Appl 8:646–653

    Article  MathSciNet  MATH  Google Scholar 

  11. Ji DH, Koo JH, Won SC, Lee SM, Park JH (2011) Passivity-based control for Hopfield neural networks using convex representation. Appl Math Comput 217:6168–6175

    Article  MathSciNet  MATH  Google Scholar 

  12. Kwon OM, Lee SM, Park JH (2010) Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Phys Lett A 374:1232–1241

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwon OM, Lee SM, Park JH (2010) Improved results on stability analysis of neural networks with time-varying delays: novel delay-dependent criteria. Mod Phys Lett B 24:775–789

    Article  MATH  Google Scholar 

  14. Lee SM, Kwon OM, Park JH (2010) A novel delay-dependent criterion for delayed neural networks of neutral type. Phys Lett A 374:1843–1848

    Article  MathSciNet  MATH  Google Scholar 

  15. Li C, Liao X (2005) Passivity analysis of neural networks with time delay. IEEE Trans Circuits Syst II 52:471–475

    Article  Google Scholar 

  16. Liu Z, Peng J (2010) Delay-independent stability of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions. Neural Comput Applic 19:151–158

    Article  Google Scholar 

  17. Lou X, Cui B (2007) Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70:1071–1078

    Article  Google Scholar 

  18. Lozano R, Brogliato B, Egeland O, Maschke B (2000) Dissipative systems analysis and control: theory and applications. Springer, London

    Book  Google Scholar 

  19. Park JH (2007) Further results on passivity analysis of delayed cellular neural networks. Chaos Solitons Fractals 34:1546–1551

    Article  MathSciNet  MATH  Google Scholar 

  20. Song Q, Liang J, Wang Z (2009) Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72:1782–1788

    Article  Google Scholar 

  21. Song Q, Wang Z (2007) A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays. Phys Lett A 368:134–145

    Article  Google Scholar 

  22. Sun J, Liu G, Chen J (2009) Delay-dependent stability and stabilization of neutral time-delay systems. Int J Robust Nonlinear Control 19:1364–1375

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu Z, Su H, Chu J, Zhou W (2010) Improved delay-dependent stability condition of discrete recurrent neural networks with time-varying delays. IEEE Trans Neural Netw 21:692–697

    Article  Google Scholar 

  24. Xu S, Lam J, Ho DWC (2006) A new LMI condition for delay-dependent asymptotic stability of delayed Hopfield neural networks. IEEE Trans Circuits Syst II 53:230–234

    Article  Google Scholar 

  25. Xu S, Lam J, Ho DWC, Zou Y (2004) Global robust exponential stability analysis for interval recurrent neural networks. Phys Lett A 325:124–133

    Article  MATH  Google Scholar 

  26. Xu S, Lam J, Ho DWC, Zou Y (2005) Delay-dependent exponential stability for a class of neural networks with time delays. J Math Anal Appl 183:16–28

    MathSciNet  MATH  Google Scholar 

  27. Xu S, Zheng W, Zou Y (2009) Passivity analysis of neural networks with time-varying delays. IEEE Trans Circuits Syst II 56:325–329

    Article  Google Scholar 

  28. Yu W (2004) Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms. Inf Sci 158:131–147

    Article  MATH  Google Scholar 

  29. Yue D, Zhang Y, Tian E (2008) Improved global robust delay-dependent stability criteria for delayed cellular neural networks. Int J Comput Math 85:1265–1277

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang B, Xu S (2007) Robust filtering for uncertain discrete piecewise time-delay systems. Int J Control 80:636–645

    Article  MATH  Google Scholar 

  31. Zhang B, Xu S, Zong G, Zou Y (2009) Delay-dependent exponential stability for uncertain stochastic Hopfield neural networks with time-varying delays. IEEE Trans Circuits Syst I 56:1241–1247

    Article  MathSciNet  Google Scholar 

  32. Zhang B, Xu S, Zou Y (2008) Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time-varying delays. Neurocomputing 72:321–330

    Article  Google Scholar 

  33. Zhang H, Dong M, Wang Y, Sun N (2010) Stochastic stability analysis of neutral-type impulsive neural networks with mixed time-varying delays and Markovian jumping. Neurocomputing 73:2689–2695

    Article  Google Scholar 

  34. Zhang Y, Xu S, Zeng Z (2009) Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay. Neurocomputing 72:3343–3351

    Article  Google Scholar 

  35. Zhang Y, Yue D, Tian E (2009) Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay. Neurocomputing 72:1265–1273

    Article  Google Scholar 

  36. Zhu Q, Cao J (2010) Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays. Neurocomputing 73:2671–2680

    Article  Google Scholar 

  37. Zuo Z, Yang C, Wang Y (2010) A new method for stability analysis of recurrent neural networks with interval time-varying delay. IEEE Trans Neural Netw 21:339–344

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Graduate Innovation and Creativity Foundation of Jiangsu Province under Grant CXZZ11 0255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, G., Ma, Q. & Qu, Y. Robust passivity analysis of a class of discrete-time stochastic neural networks. Neural Comput & Applic 22, 1509–1517 (2013). https://doi.org/10.1007/s00521-012-0838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0838-0

Keywords

Navigation