Skip to main content
Log in

RETRACTED ARTICLE: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

This article was retracted on 21 June 2021

This article has been updated

Abstract

Soft computing modeling of strength enhancement of concrete cylinders retrofitted by carbon-fiber-reinforced polymer (CFRP) composites using adaptive neuro-fuzzy inference system (ANFIS) and genetic programming has been carried out in the present work. A comparative study has also been presented using artificial neural network, multiple regression and some existing empirical models. The proposed models are based on experimental results collected from literature. The models represent the ultimate strength of concrete cylinders after CFRP confinement that is in terms of diameter and height of the cylindrical specimen, ultimate circumferential strain in the CFRP jacket, elastic modulus of CFRP, unconfined concrete strength and total thickness of CFRP layer used. The results obtained from different models are presented and compared among which the ANFIS models are considered to be the most accurate so far and quite satisfactory as compared to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Hollaway LC (2004) Advanced polymer composites for structural applications in construction: ACIC 2004. Woodhead, Abingdon, UK

    Book  Google Scholar 

  2. Leung CKY, Ng MYM, Luk HCY (2006) Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams. J Compos Constr (ASCE) 10(2):125–138

    Article  Google Scholar 

  3. Matthys S, Toutanji H, Audenaert K, Taerwe L (2005) Axial load behavior of largescale columns confined with fiber-reinforced polymer composites. ACI Struct J 102(2):258–267

    Google Scholar 

  4. Lam L, Teng JG, Cheng CH, Xiao Y (2006) FRP-confined concrete under axial cyclic compression. Cem Concr Res 28(10):949–958

    Article  Google Scholar 

  5. Deniaud C, Neale KW (2006) An assessment of constitutive models for concrete columns confined with fiber composite sheets. Compos Struct 73(3):318–330

    Article  Google Scholar 

  6. Teng JG, Yu T, Wong YL, Dong SL (2007) Hybrid FRP-concrete-steel tubular columns: concept and behavior. Constr Build Mater 21(4):846–854

    Article  Google Scholar 

  7. Lee C, Hegemier GA (2009) Model of FRP-confined concrete cylinders in axial compression. J Compos Constr (ASCE) 13(5):442–454

    Article  Google Scholar 

  8. Jodaei A, Jalal M, Yas MH (2011) Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos Part B 43:340–353

    Article  Google Scholar 

  9. Ashrafi HR, Jalal M, Garmsiri K (2010) Prediction of load–displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network. Expert Syst Appl 37:7663–7668

    Article  Google Scholar 

  10. Unal O, Demir F, Uygunoglu T (2007) Fuzzy logic approach to predict stress–strain curves of steel fiber-reinforced concretes in compression. Build Environ 42:3589–3595

    Article  Google Scholar 

  11. Saafi M, Toutanji HA, Li Z (1999) Behavior of concrete columns confined with fiber reinforced polymer tubes. ACI Mater J 96(4):500–509

    Google Scholar 

  12. Rochette P, Labossiere P (2000) Axial testing of rectangular column models confined with composites. J Compos Constr (ASCE) 4(3):129–136

    Article  Google Scholar 

  13. Xiao Y, Wu H (2000) Compressive behavior of concrete confined by carbon fiber composite jackets. J Mater Civ Eng 12(2):139–146

    Article  Google Scholar 

  14. Harmon TG, Slattery KT (1992) Advanced composite confinement of concrete. In: First international conference on advanced composite materials in bridges and structures, Sherbrooke, Québec, Canada, pp 299–306

  15. Picher F, Rochette P, Labossiére P (1996) Confinement of concrete cylinders with CFRP. In: Proceedings of the first composites in infrastructure ICCI’96, 15–17 January, Tucson, Arizona, pp 829–841

  16. Watanabe K, H Nakamura, Y Honda, Toyoshima M, Iso M, Fujinaki T, Kaneto M (1997) Confinement effect of FRP sheet on strength and ductility of concrete cylinders under uni-axial compression. In: Proceedings of the third international symposium on non-metallic FRP for concrete structures, Japan, pp 233–240

  17. Kono S, Inazumi M, Kaku T (1998) Evaluation of confining effects of CFRP sheets on reinforced concrete members. In: Proceedings of the second international conference on composites in infrastructure ICCI’98, Tucson, Arizona, 5–7 January, pp 343–355

  18. Toutanji HA (1999) Stress–strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACI Mater J 96(3):397–404

    Google Scholar 

  19. Matthys S, Taerwe L, Audenaert K (1999) Tests on axially loaded concrete columns confined by fiber reinforced polymer sheet wrapping. In: Fourth international symposium on fiber reinforced polymer reinforcement for reinforced concrete structures, SP-188, American Concrete Institute, Farmington, Michigan, USA, pp 217–229

  20. Shahawy M, Mirmiran A, Beitelman A (2000) Test and modeling of carbon-wrapped concrete columns. Compos Part B Eng ASCE 31:471–480

    Article  Google Scholar 

  21. Micelli F, Myers JJ, Murthy S (2001) Effect of environmental cycles on concrete cylinders confined with FRP. In: Proceedings of CCC2001 international conference on composites in construction, Porto, Portugal

  22. Mirmiran A, Shahawy M, Samaan M (1999) Strength and ductility of hybrid FRPconcrete beam-columns. J Struct Eng ASCE 125(10):1085–1093

    Article  Google Scholar 

  23. De Lorenzis L, Micelli F, La Tegola A (2002) Influence of specimen size and resin type on the behavior of FRP-confined concrete cylinders. In: Shenoi RA, Moy SSJ, Hollaway LC (eds) Advanced polymer composites for structural applications in construction, proceedings of the first international conference. Thomas Telford, London, pp 231–239

    Chapter  Google Scholar 

  24. Dias da Silva V, Santos JMC (2001) Strengthening of axially loaded concrete cylinders by surface composites. In: Figueiras J, Juvandes L, Faria R, Marques AT, Ferreira A, Barros J, Appleton J (eds) Composites in constructions, proceedings of the international conference. A.A. Balkema Publishers, Lisse, The Netherlands, pp 257–262

  25. Pessiki S, Harries KA, Kestner JT, Sause R, Ricles JM (1997) Axial behavior of reinforced concrete columns confined with FRP jackets. J Compos Constr ASCE 5(4):237–245

    Article  Google Scholar 

  26. Wang P, Cheong KK (2001) RC columns strengthened by FRP under uniaxial compression. In: Teng JG (ed) FRP composites in civil engineering, proceedings of the international conference. Elsevier, Oxford, pp 327–334

    Google Scholar 

  27. Shehata IAEM, Carneiro LAV, Shehata LCD (2002) Strength of short concrete columns confined with CFRP sheets. Mater Struct 35(1):50–58

    Article  Google Scholar 

  28. Kshirsagar S, Lopez-Anido RA, Gupta RK (2000) Environmental aging of fiber reinforced polymer-wrapped concrete cylinders. ACI Mater J 97(6):703–712

    Google Scholar 

  29. Berthet JF, Ferrier E, Hamelin P (2005) Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study. Constr Build Mater 19:223–232

    Article  Google Scholar 

  30. Lin CT, Li YF (2003) An effective peak stress formula for concrete confined with carbon fiber reinforced plastics. Canadian J Civil Eng 30:882–889

    Article  Google Scholar 

  31. Richart FE, Brandtzaeg A, Brown RL (1928) A study of the failure of concrete under combined compressive stress. University of Illinois, Engineering Experimental Station, Illinois

    Google Scholar 

  32. Saadatmanesh H, Ehsani MR, Li MW (1994) Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Struct J 91(4):434–447

    Google Scholar 

  33. Samaan M, Mirmiran A, Shahawy M (1998) Model of concrete confined by fiber composites. J Struct Eng ASCE 124(9):1025–1031

    Article  Google Scholar 

  34. Lam L, Teng JG (2002) Strength models for fiber-reinforced-plastic-confined concrete. J Struct Eng ASCE 128(5):612–623

    Article  Google Scholar 

  35. Zadeh LA (1994) Soft computing and fuzzy logic. IEEE Softw 11(6):48–56

    Article  Google Scholar 

  36. Fausett LV (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  37. Jodaei A, Jalal M, Yas MH (2011) Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos B 34(2):340–353

    Article  Google Scholar 

  38. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  39. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  40. Haupt RL, Haupt SE (2004) The practical handbook of genetic algorithms, 2nd edn. Chapman & Hall/CRC, London/Boca Raton

    MATH  Google Scholar 

  41. Chambers L (2001) The practical handbook of genetic algorithms, 2nd edn. Chapman & Hall/CRC, London/Boca Raton

    Google Scholar 

  42. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  43. Ferreira C (2002) Gene expression programming: mathematical modeling by an artificial intelligence. Angra do Heroismo, Portugal

  44. Ferreira C (2001) Gene expression programming in problem solving. In: Invited tutorial of the 6th online world conference on soft computing in industrial applications, pp 10–24

  45. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13(2):87–129

    MathSciNet  MATH  Google Scholar 

  46. http://www.gepsoft.com/

  47. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cyber 23(3):665–685

    Article  Google Scholar 

  48. Jang JSR, Sun CT (1995) Nuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  49. Ramezanianpour AA, Sobhani J, Sobhani M (2004) Application of an adaptive neurofuzzy system in the prediction of HPC compressive strength. In: Proceedings of the fourth international conference on engineering computational technology. Civil-Comp Press, Lisbon, Portugal, p 138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Jalal.

Appendix

Appendix

Ref.

Code

Geometry

FRP properties

\( f_{cc,\exp }^{\prime } \,({\text{Mpa}}) \)

d (mm)

h (mm)

nxt (mm)

E FRP (Mpa)

ε rup (mm)

\( f_{c}^{\prime } \,({\text{Mpa}}) \)

Harmon and Slattery [14]

HA1

51

102

0.089

235,000

0.0113

41

86.1

HA2

51

102

0.179

235,000

0.01

41

120.54

HA3

51

102

0.344

235,000

0.0075

41

158.26

HA4

51

102

0.179

235,000

0.002

103

130.81

HA5

51

102

0.344

235,000

0.00725

103

193.64

HA6

51

102

0.689

235,000

0.0055

103

303.85

HA7

153

305

0.36

83,000

0.0084

39.7

55.98

Picher et al. [15]

PI1

100

200

0.67

223,400

0.00667

30.2

104.49

Watanabe et al. [16]

WA1

100

200

0.14

611,600

0.0025

30.2

41.68

WA2

100

200

0.28

611,600

0.00167

30.2

55.87

WA3

100

200

0.42

611,600

0.0021

30.2

63.42

WA4

100

200

0.167

235,000

0.0084

34.3

57.28

Kono et al. [17]

KO1

100

200

0.167

235,000

0.0092

34.3

64.83

KO2

100

200

0.167

235,000

0.0096

32.3

61.69

KO3

100

200

0.167

235,000

0.0063

32.3

57.82

KO4

100

200

0.334

235,000

0.0077

32.3

86.89

KO5

100

200

0.334

235,000

0.0066

34.8

82.82

KO6

100

200

0.334

235,000

0.0091

34.8

103.36

KO7

76

305

0.236

72,600

0.0163

30.93

60.93

Toutanji [18]

TO1

76

305

0.22

230,500

0.0125

30.93

94.96

TO2

76

305

0.33

372,800

0.0055

30.93

94.03

TO3

150

300

0.117

220,000

0.0126

34.9

46.07

Matthys et al. [19]

MA1

150

300

0.235

500,000

0.0031

34.9

45.72

MA2

150

300

0.12

200,000

0.0115

34.9

44.3

MA3

150

300

0.12

200,000

0.0108

34.9

42.2

MA4

150

300

0.24

420,000

0.0019

34.9

41.3

MA5

150

300

0.24

420,000

0.0018

34.9

40.7

MA6

153

305

0.36

82,700

0.006

49

59.29

Shahawy et al. [20]

SH1

153

305

0.66

82,700

0.006

49

76.44

SH2

100

200

0.6

82,700

0.0089

42

73.5

Rochette and Labossiere [12]

RL1

100

200

0.6

82,700

0.0095

42

73.5

RL2

100

200

0.6

82,700

0.008

42

67.62

RL3

100

200

0.35

72,400

0.0101

32

54.08

Micelli et al. [21]

MC1

100

200

0.35

72,400

0.0099

32

48

MC2

152

435

0.8

32,000

0.017

35

52.85

Saafi et al. [11]

SA1

152

435

0.11

367,000

0.013

35

54.95

SA2

152

305

1.44

37,233

0.0123

30.86

53.7

Mirmiran et al. [22]

MS1

152

305

1.44

37,233

0.0177

29.64

66.99

MS2

152

305

0.38

105,000

0.012

33.7

47.9

Xiao and Wu [13]

XW1

152

305

0.38

105,000

0.0124

33.7

49.4

XW2

152

305

0.38

105,000

0.0098

43.8

54.8

XW3

152

305

0.38

105,000

0.0047

43.8

52.1

XW4

152

305

0.38

105,000

0.0037

43.8

48.7

XW5

152

305

0.38

105,000

0.0069

55.2

57.9

XW6

152

305

0.38

105,000

0.0048

55.2

62.9

XW7

152

305

0.38

105,000

0.0049

55.2

58.1

XW8

152

305

0.76

105,000

0.0081

55.2

77.6

XW9

120

240

0.3

91,100

0.007

43

58.5

De Lorenzis et al. [23]

LO1

120

240

0.3

91,100

0.008

43

65.6

LO2

150

300

0.45

91,100

0.008

38

62

LO3

150

300

0.45

91,100

0.008

38

67.5

LO4

150

600

0.111

240,000

0.0026

28.2

31.4

Dias da Silva and Santos [24]

SS1

150

600

0.222

240,000

0.0118

28.2

57.4

SS2

150

600

0.333

240,000

0.0114

28.2

69.5

SS3

150

600

0.167

390,000

0.0037

28.2

41.5

SS4

150

600

0.334

390,000

0.0069

28.2

65.6

SS5

150

600

0.501

390,000

0.0064

28.2

79.4

SS6

152

610

1

21,600

0.0115

26.2

38.4

Pessiki et al. [25]

PE1

152

610

2

21,600

0.0124

26.2

52.5

PE2

152

610

1

38,100

0.0081

26.2

50.6

PE3

152

610

2

38,100

0.0072

26.2

64

PE4

200

600

0.36

235,000

0.0085

27.9

82.8

Wang and Cheong [26]

WC1

200

600

0.36

235,000

0.0107

27.9

81.2

WC2

150

300

0.165

235,000

0.0123

29.8

57

Shehata et al. [27]

SH1

150

300

0.33

235,000

0.0174

29.8

72.1

SH2

102

201

1.42

19,900

0.0174

38

57

Kshirsagar et al. [28]

KS1

102

204

1.42

19,900

0.0207

39.4

63.1

KS2

102

204

1.42

19,900

0.0189

39.5

60.4

KS3

160

320

0.165

230,000

0.00957

22.18

42.8

Berthet et al. [29]

BE1

160

320

0.165

230,000

0.00964

25.03

37.8

BE2

160

320

0.165

230,000

0.0096

25.03

45.8

BE3

160

320

0.33

230,000

0.00899

24.98

56.7

BE4

160

320

0.33

230,000

0.00911

24.98

55.2

BE5

160

320

0.33

230,000

0.00908

25.04

56.1

BE6

160

320

0.11

230,000

0.01015

40.16

49.8

BE7

160

320

0.11

230,000

0.00952

40.32

50.8

BE8

160

320

0.11

230,000

0.01203

40.33

48.8

BE9

160

320

0.165

230,000

0.0088

40.07

53.7

BE10

160

320

0.165

230,000

0.00853

40.22

54.7

BE11

160

320

0.165

230,000

0.01042

40.16

51.8

BE12

160

320

0.22

230,000

0.00788

40.07

59.7

BE13

160

320

0.22

230,000

0.0083

40.2

60.7

BE14

160

320

0.22

230,000

0.00809

40.13

60.2

BE15

160

320

0.44

230,000

0.00924

40.18

91.6

BE16

160

320

0.44

230,000

0.00967

40.18

89.6

BE17

160

320

0.44

230,000

0.00885

40.09

86.6

BE18

160

320

0.99

230,000

0.00989

40.11

142.4

BE19

160

320

0.99

230,000

0.01

40.11

140.4

BE20

160

320

1.32

230,000

0.00999

40.07

166.3

BE21

160

320

0.33

230,000

0.00949

51.94

82.6

BE22

160

320

0.33

230,000

0.00865

52

82.8

BE23

160

320

0.33

230,000

0.00891

52

82.3

BE24

160

320

0.66

230,000

0.00667

51.97

108.1

BE25

160

320

0.66

230,000

0.00871

52.1

112

BE26

160

320

0.66

230,000

0.00882

51.88

107.9

BE27

70

140

0.33

230,000

0.00712

112.88

141.1

BE28

70

140

0.33

230,000

0.00738

112.68

143.1

BE29

70

140

0.82

230,000

0.00754

112.8

189.5

BE30

70

140

0.82

230,000

0.00728

113.19

187.9

BE31

70

140

0.33

230,000

0.00459

171

186.4

BE32

70

140

0.99

230,000

0.00799

169.37

296.4

BE33

150

300

0.11

232,000

0.01

17.94

37.89

Lin and Li [30]

LL1

120

240

0.11

232,000

0.01

17.39

42.79

LL2

100

200

0.11

232,000

0.01

17.51

45.2

LL3

150

300

0.22

232,000

0.01

17.94

54.68

LL4

120

240

0.22

232,000

0.01

17.39

62.26

LL5

100

200

0.22

232,000

0.01

17.51

70.1

LL6

150

300

0.33

232,000

0.01

17.94

72.17

LL7

120

240

0.33

232,000

0.01

17.39

83.98

LL8

100

200

0.33

232,000

0.01

17.51

91.56

LL9

150

300

0.11

232,000

0.01

22.75

44.55

LL10

120

240

0.11

232,000

0.01

22.73

48.18

LL11

200

400

0.11

232,000

0.01

23.04

56.28

LL12

150

300

0.22

232,000

0.01

22.75

60.8

LL13

120

240

0.22

232,000

0.01

22.73

75.44

LL14

100

200

0.22

232,000

0.01

23.04

80.35

LL15

150

300

0.33

232,000

0.01

22.75

82.86

LL16

120

240

0.33

232,000

0.01

22.73

89.44

LL17

100

200

0.33

232,000

0.01

23.04

101.8

LL18

150

300

0.11

232,000

0.01

24.99

48.09

LL19

120

240

0.11

232,000

0.01

25.42

55.33

LL20

200

400

0.11

232,000

0.01

25.01

61.08

LL21

150

300

0.22

232,000

0.01

24.99

68.49

LL22

120

240

0.22

232,000

0.01

25.42

79.75

LL23

100

200

0.33

232,000

0.01

25.01

88.82

LL24

150

300

0.33

232,000

0.01

24.99

87.04

LL25

120

240

0.33

232,000

0.01

25.42

96.85

LL26

100

200

0.33

232,000

0.01

25.01

107.4

About this article

Cite this article

Jalal, M., Ramezanianpour, A.A., Pouladkhan, A.R. et al. RETRACTED ARTICLE: Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput & Applic 23, 455–470 (2013). https://doi.org/10.1007/s00521-012-0941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0941-2

Keywords

Navigation