Skip to main content
Log in

Adaptive neural network output feedback control of stochastic nonlinear systems with dynamical uncertainties

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, a robust adaptive neural network (NN) backstepping output feedback control approach is proposed for a class of uncertain stochastic nonlinear systems with unknown nonlinear functions, unmodeled dynamics, dynamical uncertainties and without requiring the measurements of the states. The NNs are used to approximate the unknown nonlinear functions, and a filter observer is designed for estimating the unmeasured states. To solve the problem of the dynamical uncertainties, the changing supply function is incorporated into the backstepping recursive design technique, and a new robust adaptive NN output feedback control approach is constructed. It is mathematically proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing design parameters appropriately. The simulation example and comparison results further justify the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polycarpou MM, Mears MJ (1998) Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. Int J Control 70(3):363–384

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen WS, Jiao LC, Wu JS (2012) Globally stable adaptive robust tracking control using RBF neural networks as feed forward compensators. Neural Comput Appl. doi:10.1007/s00521-010-0455-8

    Google Scholar 

  3. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Article  Google Scholar 

  4. Tong SC, Li YM (2007) Direct adaptive fuzzy backstepping control for a class of nonlinear systems. Int J Innov Comput Inf Control 3(4):887–896

    Google Scholar 

  5. Chen B, Liu XP, Liu K, Lin C (2010) Fuzzy-approximation-based adaptive control of strict-feedback nonlinear systems with time delays. IEEE Trans Fuzzy Syst 18(5):883–892

    Article  MathSciNet  Google Scholar 

  6. Li TS, Li RH, Wang D (2011) Adaptive neural control of nonlinear MIMO systems with unknown time delays. Neurocomputing 78(1):83–88

    Article  Google Scholar 

  7. Zhang HG, Quan YB (2001) Modeling, identification and control of a class of nonlinear system. IEEE Trans Fuzzy Syst 9(2):349–354

    Article  Google Scholar 

  8. Li TS, Li RH, Li JF (2011) Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation. Neurocomputing 74(14–15):2277–2283

    Article  Google Scholar 

  9. Hua CC, Guan XP, Shi P (2007) Robust output tracking control for a class of time-delay nonlinear using neural network. IEEE Trans Neural Netw 18(2):495–505

    Article  Google Scholar 

  10. Hua CC, Wang QG, Guan XP (2009) Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction. IEEE Trans Syst Man Cybern B 39(2):363–374

    Article  Google Scholar 

  11. Tong SC, Li YM (2009) Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst 160(12):1749–1764

    Article  MathSciNet  MATH  Google Scholar 

  12. Tong SC, Li CY, Li YM (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern B 38(1):258–266

    Article  Google Scholar 

  14. Pan Z, Basar T (1999) Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J Control Optim 37(3):957–995

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng H, Krstic M (1999) Output-feedback stochastic nonlinear stabilization. IEEE Trans Autom Control 44(2):328–333

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi P, Xia YQ, Liu GP, Rees D (2006) On designing of sliding mode control for stochastic jump systems. IEEE Trans Autom Control 51(1):97–103

    Article  MathSciNet  Google Scholar 

  17. Xia YQ, Fu M, Shi P (2009) Adaptive backstepping controller design for stochastic jump systems. IEEE Trans Autom Control 54(12):2853–2859

    Article  MathSciNet  Google Scholar 

  18. Wu ZJ, Xie XJ, Zhang SY (2007) Adaptive backstepping controller design using stochastic small-gain theorem. Automatica 43(4):608–620

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu ZJ, Xie XJ, Zhang SY (2007) Stochastic adaptive backstepping controller design by introducing dynamics signal and changing supply function. Int J Control 79(2):1635–1643

    MathSciNet  Google Scholar 

  20. Liu SJ, Zhang JF, Jiang ZP (2007) Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2):238–251

    Article  MathSciNet  MATH  Google Scholar 

  21. Xie S, Xie L (2000) Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans Autom Control 45(1):132–137

    Article  MATH  Google Scholar 

  22. Chen WS, Jiao LC (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern B 40(3):939–950

    Article  MathSciNet  Google Scholar 

  23. Chen WS, Jiao LC, Du ZB (2010) Output-feedback adaptive dynamic surface control of stochastic nonlinear systems using neural network. IET Control Theory Appl 4(12):3012–3021

    Article  MathSciNet  Google Scholar 

  24. Tong SC, Li Y, Li YM, Liu YJ (2011) Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans Syst Man Cybern B 41(6):1693–1704

    Article  MathSciNet  Google Scholar 

  25. Li J, Chen WS, Li JM (2011) Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int J Robust Nonlinear Control 21(3):452–472

    Article  MATH  Google Scholar 

  26. Chen WS, Jiao LC, Wu JS (2012) Decentralized backstepping output-feedback control for stochastic interconnected systems with time-varying delays using neural networks. Neural Comput Appl. doi:10.1007/s00521-011-0590-x

    Google Scholar 

  27. Jiang ZP, Praly L (1998) Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica 34(7):825–840

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu ZJ, Xie XJ, Shi P (2008) Robust adaptive output-feedback control for nonlinear systems with output unmodeled dynamics. Int J Robust Nonlinear Control 18(11):1162–1187

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61074014), the Outstanding Youth Funds of Liaoning Province (No. 2005219001) and Program for Liaoning Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Tong, S. & Li, Y. Adaptive neural network output feedback control of stochastic nonlinear systems with dynamical uncertainties. Neural Comput & Applic 23, 1481–1494 (2013). https://doi.org/10.1007/s00521-012-1099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1099-7

Keywords

Navigation