
1 23

Neural Computing and Applications

ISSN 0941-0643

Neural Comput & Applic
DOI 10.1007/s00521-012-1129-5

Compressing arrays of classifiers using
Volterra-neural network: application to
face recognition

M. Rubiolo, G. Stegmayer & D. Milone

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Limited. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

ORIGINAL ARTICLE

Compressing arrays of classifiers using Volterra-neural network:
application to face recognition

M. Rubiolo • G. Stegmayer • D. Milone

Received: 11 January 2012 / Accepted: 3 August 2012

� Springer-Verlag London Limited 2012

Abstract Model compression is required when large

models are used, for example, for a classification task, but

there are transmission, space, time, or computing con-

straints that have to be fulfilled. Multilayer perceptron

(MLP) models have been traditionally used as classifiers.

Depending on the problem, they may need a large number

of parameters (neuron functions, weights, and bias) to

obtain an acceptable performance. This work proposes a

technique to compress an array of MLPs, through the

weights of a Volterra-neural network (Volterra-NN),

maintaining its classification performance. It will be shown

that several MLP topologies can be well-compressed into

the first-, second-, and third-order (Volterra-NN) outputs.

The obtained results show that these outputs can be used to

build an array of (Volterra-NN) that needs significantly

less parameters than the original array of MLPs, further-

more having the same high accuracy. The Volterra-NN

compression capabilities were tested for solving a face

recognition problem. Experimental results are presented on

two well-known face databases: ORL and FERET.

Keywords Model compression � Array of neural

networks � Volterra-neural network � Face recognition

1 Introduction

The purpose of model compression is to find a fast and

compact model to approximate a function learned by, for

example, a classifier. Moreover, it is desirable to achieve

this without significant loss in performance [3]. Often the

best performing models that use supervised learning are

combinations of complex and large classifiers. However, in

some situations, it is not enough for a classifier to be highly

accurate; it also has to meet some requirements regarding

on-line execution time, storage space, and limited com-

putational power [26].

It is well-known that multilayer perceptron (MLP)

models are usually considered as a powerful classification

model. However, they easily become large models just by

the addition of neurons, for example, in the hidden layer,

which has a direct effect over the number of model

weights. Similarly, the introduction of more information to

the model, that is to say more input variables in order to

better learn the training data and to improve its classifi-

cation ability, can cause an increment of the model

complexity.

It has been recently shown that a Volterra model can be

extracted from the parameters of a trained neural network

(NN) [23]. The Volterra model is formed by Volterra

kernels, which are associated with the parameters of the

trained NN. This has proven to be particularly useful for

reproducing the nonlinear and dynamic behavior of new

wireless communications devices [18]. Moreover, in

Rubiolo et al. [21], the Volterra kernels extraction proce-

dure has been used to build a Volterra-neural network

(Volterra-NN) model, which is a compressed version of a

trained MLP model over a very simple classification task,

maintaining the same recognition rate than the original

MLP model but with fewer parameters. In this work, we

Electronic supplementary material The online version of this
article (doi:10.1007/s00521-012-1129-5) contains supplementary
material, which is available to authorized users.

M. Rubiolo (&) � G. Stegmayer

CONICET, CIDISI-UTN-FRSF, Lavaise 610,

3000 Santa Fe, Argentina

e-mail: mrubiolo@gmail.com; mrubiolo@santafe-conicet.gov.ar

D. Milone

CONICET, SINC(i)-FICH-UNL, Ciudad Universitaria,

RN 168 Km. 472.4, 3000 Santa Fe, Argentina

123

Neural Comput & Applic

DOI 10.1007/s00521-012-1129-5

Author's personal copy

http://dx.doi.org/10.1007/s00521-012-1129-5

propose that, since it is possible to obtain a Volterra-NN

model from a single trained MLP model, it is also possible

to compress an array of MLPs (aMLP) using Volterra-NNs.

That is to say, the same methodology applied to build a

Volterra-NN model from a single MLP can be used to

obtain an array of Volterra-NN models from an aMLP.

In fact, arrays and ensembles of neural classifiers have

proven to reach significant better results in classification

problems than single models [7, 20], in particular for the task

of face recognition (FR) [26]. In these systems, the first step

consists of face detection through image processing tech-

niques. Secondly, a feature extraction method is applied to

extract useful information of the face. Finally, this infor-

mation is used in a classifier for recognizing faces [27]. In

Capello et al. [4], an aMLP model was proposed for the

classification task within a FR system. Specifically, an array

of NNs have been used for classification, consisting of one

MLP for each subject (valid or authorized person), with a

final decision made over the network outputs of the complete

array. The classification was performed by the maximum

output calculation among all the networks outputs. This

configuration has achieved significant improvements over

the performance of a classic MLP. However, the use of this

new neural configuration implies much more parameters,

and therefore, a larger and more complex FR system. Due to

the fact that FR models should be able to run on small pro-

cessing devices such as mobile phones, ipods, and security

cams, or to be transmitted online, the model must have an

appropriate size in order to adjust to these requirements.

This work presents a novel approach for compressing a

face recognition model based on a novel application of the

Volterra-NN method to an array of MLPs. It will be shown

how an aMLP model that has learnt a classification prob-

lem with a certain (high) accuracy can be compressed

into a more compact representation using a Volterra-NN

model. This novel representation involves less parameters,

maintaining, however, a high recognition accuracy. Two

different face recognition databases have been used to

show the effectiveness of the proposed method.

The paper is organized as follows. Section 2 explains in

detail the proposed Volterra-NN model and its use as a

classifier in a face recognition system. The materials and

methods used in the study are presented on Sect. 3. Results of

the model evaluation through two public face databases as

well as a discussion of the experiments are shown in Sect. 4.

Finally, Sect. 5 presents the conclusions and future work.

2 Volterra-neural network for neural networks

compression

The Volterra series and Volterra theorem was developed in

1887 by Vito Volterra. It is a model for representing

nonlinear dynamic behavior frequently used in system

identification [25]. In Stegmayer and Chiotti [23], several

formulas for the extraction of Volterra weights, indepen-

dently of the neural model topology, number of variables

involved in the problem, and nonlinearity of the system

have been presented. The equations are based on archi-

tectures having an hyperbolic tangent activation functions

in the hidden nodes, trained with a classical backpropa-

gation algorithm [16], for multi-input, multi-output sys-

tems. The MLP model is trained using the available

training data and, after that, the Volterra weights are

obtained from the trained network parameters.

This section presents the Volterra-NN model for aMLP

model compression, extending the simple algorithms for

classification proposed in Rubiolo et al. [21]. The follow-

ing subsection presents the neural model used for face

recognition; after that, some basics concepts on Volterra

models necessary to understand the proposed approach are

explained. Finally, it is shown how the Volterra-NN can

perform as a classifier when an aMLP is used.

2.1 Neural models for classification

Arrays and ensembles of single MLP networks have proven

to reach significant better results in classification problems

than single models [1, 2, 4]. The classifier model is an array

of MLPs where there is one MLP model for each class k to

be identified, with k = 1…K, being K the total number of

classes. Therefore, the aMLP model is formed by K net-

works like the one shown in Fig. 1. Each network output

takes a value of 1 if the class is identified or 0 otherwise.

The first layer of each MLP in the aMLP is a set of NI input

neurons, where each input is an eigenspace vector and

there are NH hidden neurons. When a picture has to be

classified, its projected eigenspace vector is used as input

for the classifier, that is to say, it is presented to all the

k networks defined for the aMLP model, and the maximum

output obtained among all network outputs is assigned as

class label. If a pattern of the kth-class has been presented

to the model, a value of (near) 1 is expected at the kth

network.

The application of the Volterra weights extraction

method for model compression of a classical MLP classi-

fier was presented in Rubiolo et al. [21]. It was shown how

a MLP model that has learnt a classification problem with a

certain (high) accuracy can be compressed into a more

compact representation using a Volterra model and its

parameters, named Volterra weights. Several MLP topol-

ogies can be well-compressed into the first-, second-, and

third-order Volterra weights, which can be used to build a

Volterra model that needs less parameters than the MLP

model and, at the same time, has a similar high accuracy.

This work proposes to apply and extend the compression

Neural Comput & Applic

123

Author's personal copy

procedure based on Volterra models to an array of MLPs to

solve a face recognition problem.

The first stage of a complete automatic FR system is

face detection. Once detected, the face must be represented

through an appropriate feature extraction method. A global

representation can be done through a well-known tech-

nique such us the eigenfaces [24] by applying principal

component analysis (PCA) for dimensionality reduction

[11], which is the most widely used feature extraction

method for face recognition [14]. The final stage consists of

the classification carried out by using an appropriate clas-

sifier, which be a very simple method, such us the

Euclidean distance or k-nearest-neighbors, or an array or

ensemble solution based on hundred of weak classifiers,

being MLP is one of the most popular models [12, 17]. The

next subsection presents the details of the new algorithm

proposed for extraction of the Volterra weights from an

array of MLPs used for classification, as well as the pro-

cedure used to obtain different-order Volterra-NN outputs.

2.2 Volterra-NN model forward computation

Stegmayer and Chiotti [23] have derived equations that

allow the calculation of any Volterra kernel order using the

weights and hidden neurons bias values of a NN that has

been trained on a problem using hyperbolic tangent hidden

functions. The following formulas, instead, allow the

calculus of zero, first-, second-, and third-order Volterra

kernels from a trained MLP having sigmoidal hidden units:

h0 ¼ bo þ
XNH

h¼1

w2
h

1

ð1þ e�bhÞ ð1Þ

h1ð�Þ ¼
XNH

h¼1

w2
hw1

h;i

e�bh

ð1þ e�bhÞ2
ð2Þ

h2ð�Þ ¼
XNH

h¼1

w2
hw1

h;iw
1
h;j

e�bh ðe�bh�1Þ
ð1þe�bh Þ3

2!
ð3Þ

h3ð�Þ ¼
XNH

h¼1

w2
hw1

h;iw
1
h;jw

1
h;k

�e�bh ð�e�2bhþ4e�1�1Þ
ð1þe�bh Þ4

3!
ð4Þ

where NH is the number of hidden neurons, NI is the number

of input neurons, and wh and bh are the weight and the bias

associated with a hidden sigmoidal neuron, respectively; for

i; j; k ¼ ½1; � � � ;NI �. These formulas are easilly extended to

any kernel order. Due to space restrictions, only up to third

order is shown. To simplify the notation, the Volterra

weights will be defined from now on as follows: vð0Þ ¼
h0; v

ð1Þ
i ¼ h1ð�Þ; vð2Þi;j ¼ h2ð�Þ and v

ð3Þ
i;j;k ¼ h3ð�Þ. Algorithm 1

shows in detail the Volterra weights extraction procedure, in

which it is possible to compute the zero, first-, second-, and

third-order Volterra weights. The input is the training data,

and the outputs are the Volterra weights. The first step con-

sists of training a MLP classifier model with the training data

D as it is possible to see in line 2. From the trained neural

model M, the Volterra weights can be calculated. According

to (1), the zero-order Volterra weight is obtained (line 3).

Similarly, by applying (2), (3), and (4), it is possible to

compute the first (line 9), second (line 8),and third-order

(line 7) Volterra weights, respectively.

The different-order Volterra-NN (V-NN) models that

can compress a MLP are depicted graphically in Fig. 2.

The boxes represent the input variables (in the example,

x1 and x2), and the arrows that join them symbolize

their product with their corresponding Volterra weights.

Fig. 1 Array of MLPs (aMLP) model for classification

Algorithm 1 Volterra weights extraction

Neural Comput & Applic

123

Author's personal copy

The white circles act as summarizing all the products

between input variables and Volterra weights, plus the

(n - 1)-order V-NN model (V(n-1) - NN). As a result, a

new nth-order Volterra model (V(n) - NN) is obtained. It is

important to highlight that the different cross-products

combinations between the input variables are shown in the

figure inside a rectangular box, in an effort to clarify the

process for obtaining the different Volterra outputs. This

V-NN model can be similarly applied to any number of

inputs.

The output of the second-order V-NN model

(V(1) - NN) is obtained analytically by adding the 0-order

Volterra weight v(0) to the product between each input

variable (x1 and x2) and their corresponding first-order

Volterra weights,

sð1Þ ¼ vð0Þ þ v
ð1Þ
1 x1 þ v

ð1Þ
2 x2: ð5Þ

The second-order V-NN model (V(2) - NN) output is

obtained by adding s(1) together with the products among

x1
2, x2

2, the cross-product x1 x2 and their corresponding

second-order Volterra weights, resulting in:

sð2Þ ¼ sð1Þ þ v
ð2Þ
1;1 x2

1 þ v
ð2Þ
2;2 x2

2 þ v
ð2Þ
1;2 x1x2: ð6Þ

The V(3) - NN model output is obtained similarly:

sð3Þ ¼ sð2Þ þ v
ð3Þ
1;1;1 x3

1 þ v
ð3Þ
2;2;2 x3

2 þ v
ð3Þ
1;1;2 x2

1x2 þ v
ð3Þ
1;2;2 x1x2

2:

ð7Þ

Similarly, higher order V-NN outputs can be calculated.

As can be seen, each high order Volterra model includes its

own parameters (Volterra weights) plus the lower order

ones. The new algorithm for an array of V-NN models

forward computation is presented in detail in Algorithm 2.

It receives a point from where the number of input

variables NI is determined, the number of elements in the

array, and the Volterra weights for each element in the

array, obtained by using Algorithm 1. The output of this

algorithm is an array of third-order (V(3) - NN) Volterra

outputs, but it is also possible to obtain only the first-order

(V(1) - NN) (lines 3 to 5) and second-order (V(2) - NN)

outputs (lines 7 to 10), thus providing different compressed

versions of the original aMLP classifier. The next

subsection shows how the compressed model can be used

as a classifier.

2.3 Volterra-NN as a classifier

The Volterra-NN model can be applied to a classification

problem in which different classes can be recognized from

the output signal. When an array of MLP models is com-

pressed by using V-NN, it is possible to identify only a

class from each of the output signals. That is to say, each

V-NN model is specialized on a class and the output signal

analysis determines whether the pattern is part of the class.

Fig. 2 Example of the topology of a Volterra-NN model for 2 input

variables and three V-NN outputs

Algorithm 2 3rd-Order Volterra-NN outputs forward computation

Neural Comput & Applic

123

Author's personal copy

During the training phase, data are shown in an ordered

way, showing first those pattern belonging to the class

associated with the model. In this way, the model output

can be considered as a signal having two levels, with a

bound between levels corresponding to the class limit [13].

For instance, if we have a three classes problem, the first

model is trained with data where the patterns correspond-

ing to the first class are activated (they have a 1 as target)

and other patterns, which do not represent the first class,

are not activated (they have a 0 as target). Similarly,

training data for learning the second and third classes are

presented to their corresponding models.

Figure 3 shows the output signal analysis that has to be

performed for determining upper and lower thresholds for

each class. It is possible to see the output signal corre-

sponding to the MLP (full line) and V-NN (dotted line)

models, both for the training data. The lower and the upper

threshold (dashed lines) of the class are measured in order

to determine the output-signal level change for the V-NN

model, considering the values obtained for the training set.

These changes (thresholds) will allow us to identify a new

data point received for classification as belonging (or not)

to the class. The membership of a new pattern (test point)

to the class is identified by analyzing whether the output

associated with this pattern has a value between the lower

and upper class thresholds.

Since we are analyzing the output of an aMLP model,

a different signals, each one corresponding to a class, must

be considered in order to identify which class is activated

as a result. First of all, each individual signal must be

evaluated as it was presented in the above paragraph.

Secondly, it is necessary to discover whether more than one

class model was activated for each pattern. If this situation

occurs, a max criteria is applied. That is to say, the higher

value of the activated classes for each pattern will be stated

as the winner class.

3 Materials and methods

3.1 Face databases

Two independent face databases have been used in this

study. They provide typical experimental setups for face

recognition. They are explained in detail in the following

paragraphs.

3.1.1 AT&T Laboratories: ORL

The first experiments were done by using the AT&T

Laboratories Cambridge ORL Database of Faces1 since it is

widely used in the face recognition literature [14]. In this

database, there are 10 different images of each of 40 per-

sons of different gender, ethnic background, and age (see

Fig. 4). For some subjects, the images had been taken at

different times, varying the lighting, facial expressions

(open/closed eyes, smiling/not smiling), and facial details

(glasses/no glasses). All the images were taken against a

dark homogeneous background with the subjects in an

upright, frontal position (with tolerance for some side

movement). The complete database contains 400 grayscale

face images of size 92 9 112 pixels. From this dataset,

three subject were used in this study having ten pictures

associated with each one.

Training a distinct classifier for each class (in this case,

subject) requires sufficient training data per class. How-

ever, in face recognition tasks, it is common to have a

small number of pictures per person. In fact, since different

data partitions are used to train and validate the classifier,

two pictures for subject are available for testing. Hence,

noise addition to the test dataset has been performed in

order to enlarge it and to obtain more test samples to prove

the performance of the Volterra-NN model. The noise used

was Gaussian noise with a mean of 0 and a variance

between 0.01 and 0.1. After this procedure, a total of 66

patterns per class have been obtained for the testing

dataset.

Fig. 3 Model output signal analysis for classification. Full and dotted
lines: output signal corresponding to the MLP and V-NN models,

respectively, for training data. Dashed lines: class thresholds 1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

Neural Comput & Applic

123

Author's personal copy

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

3.1.2 FERET

The facial recognition technology (FERET) database [19]

ran from 1993 through 19972, sponsored by the Department

of Defense’s Counterdrug Technology Development

Program through the Defense Advanced Research Products

Agency (DARPA). The aim was to develop automatic face

recognition capabilities that could be employed to assist

security, intelligence, and law enforcement personnel in the

performance of their duties. The FERET image corpus was

assembled to support government monitored testing and

evaluation of face recognition algorithms using standard-

ized tests and procedures. The final corpus consists of

14,051 eight-bit grayscale images of human heads with

views ranging from frontal to left and right profiles.

The facial images were collected in 15 sessions between

August 1993 and July 1996. Collection sessions lasted one

or two days. To maintain a degree of consistency

throughout the database, the same physical setup and

location was used in each photography session. Images of

an individual were acquired in sets of 5 to 11 images. Two

frontal views were taken (fa and fb); a different facial

expression was requested for the second frontal image. For

200 sets of images, a third frontal image was taken with a

different camera and different lighting (fc image). The

remaining images were collected at various angles between

right and left profile (see Fig. 5). To add variations to the

database, a second set of images was taken, for which the

subjects were asked to put on their glasses and/or pull their

hair back. The set of images referred to as a duplicate

indicates a second set of images of a person that was taken

on a later date, resulting in variations in scale, pose,

expression, and illumination of the face. Similarly to the

previous dataset, three subject were used in the study

having ten pictures associated with each one, adding

gaussian noise to the pictures to increase the number of

training/testing patterns.

3.2 Classifier architecture

Figure 6 shows the NN topology used in this study, an

array of MLP models, each one associated with a subject to

recognize. Several MLP topologies have been evaluated

from where the corresponding Volterra weights have been

extracted after training. For simplicity in the analysis of

the results, in particular which respects the performance of

the V-NN compression capabilities, only three classes

(k = 3) of each database are presented in the tables.

Fig. 4 Samples face images from the AT&T Laboratories Cambridge ORL Database of faces [14]

Fig. 5 The facial recognition technology (FERET) database [19]. Examples of different categories of probes (images). The duplicate I image

was taken within 1 year of the fa image, and the duplicate II and fa images were taken at least 1 year apart

2 http://www.itl.nist.gov/iad/humanid/feret.

Neural Comput & Applic

123

Author's personal copy

http://www.itl.nist.gov/iad/humanid/feret

The full results obtained on both face databases can be

found as supplementary material.

In face recognition problems, the training and test

datasets generally have high dimensionality due to the

pictures size. Therefore, an appropriate feature extraction

method is needed. A global representation can be done

using a widely used technique such us the eigenfaces [24]

by applying principal component analysis (PCA) for

dimensionality reduction [11]. Although PCA can highly

reduces the feature space, the application of a technique

Fig. 6 aMLP model (upper part of the classifier) for face recognition problem, which can be compressed into an array of Volterra-NN models

(lower part of the classifier)

Neural Comput & Applic

123

Author's personal copy

called Scree Test [10] further reduces the dimensionality of

the features space focusing only on those most represen-

tative eigenfaces. Scree Test is applied for determining the

number of principal components of the training and test

datasets, according to the percentage of variability of the

data to be shown. This technique allows obtaining

the different components in an orderly way according to

the variability of the data, so the first principal components

represent the data of more variability.

Regardless of the data that are modeled with PCA, it is

common to use a value of 85 % of the total variance of the

space of characteristics for identification [10]. Applying

Scree Test in the ORL dataset, the 85 % of the variance of

each training set is represented by 11 eigenfaces, so each

MLP model consists of 11 input neurons. As regards hid-

den neurons number, a simple heuristic will be adopted in

which the number of neurons NH are 11, 22, and 33, and an

output that takes a value of 1 if the subject is recognized.

Considering the case of the FERET dataset, the 85 % of the

variance of each training set is represented by 9 eigenfaces.

Therefore, each MLP model consists of 9 input neurons, a

number of hidden neuron that can be 9,18, or 27, and also

only one output. For each input signal arriving at the array,

a V-NN output of a certain order can be obtained. For

example, to obtain a first-order V(1) - NN output, the

maximum s(1) from the array is selected.

The model parameters (weights and biases) are initial-

ized with random values uniformly distributed between 0

and 1. Neurons in the hidden and output layers have sig-

moid activation functions. All the MLPs are trained with

the Levenberg-Marquardt algorithm [15] in order to guar-

antee a fast convergence. To avoid overfitting, a k-fold

cross-validation procedure [9] has been used, using the

standard setup of splitting the available images of each

person into 80 % of each class data for training and 20 %

for testing. The complete dataset has been randomly split

into k = 3 mutually exclusive subsets of equal size,

repeating the experiments three times in each fold. The

cross-validation estimate of the overall accuracy of a model

has been calculated by simply averaging the accuracy

measures over the test datasets. In each experiment and

repetition, MLP and V-NN models having less than 100 %

classification rate for each class of the training dataset have

not been considered in this study. This restriction was

imposed to the classifier performance in order to be able to

measure precisely any loss of accuracy originated by the

proposed Volterra-NN compression method.

3.3 Performance measures

This subsection presents two classical measures for com-

paring models performance. Besides, a new measure for

trade-off analysis and final model selection is proposed.

3.3.1 Recognition rate and space saving rate

For comparing each output from the proposed V-NN

models against the corresponding MLP classifier, two

performance measures are used: recognition rate (RR) and

data space savings (SS), adapted here for an aMLP clas-

sifier. In classification problems, the primary source of

performance measurements is the overall accuracy of a

classifier estimated through the classification or recognition

rate [6]. For measuring compression, data compression

ratio can be used to quantify the reduction in data repre-

sentation size produced by a compression algorithm.

However, the space saving measure is given here instead,

defined as the reduction in size relative to the uncom-

pressed space [22], often reported as a percentage, which

gives a better idea of compression power. For both cases,

the greater the rate, the better the result.

To estimate how much is the compression level

obtained, SS is calculated as the relation between the

number of parameters needed for a Volterra-NN output

(the Volterra weights) and the number of parameters of

each corresponding MLP architecture (the weights and

biases). It is well-known that for a MLP model, the number

of model parameters can be calculated as follows:

PMLP ¼ NI � NH þ NBH þ NH � NO þ NBO; ð8Þ

where NI, NH, and NO are the number of neurons at input,

hidden, and output layers, respectively, and NBH and NBO

are the number of bias for each neuron in the hidden and

output layers, respectively. In an array of MLP models,

these measures are affected by the array length a. Hence,

the number of model parameters for an aMLP can be

calculated as

PaMLP ¼ a� PMLP: ð9Þ

From each MLP that is part of the array of MLPs, a

Volterra-NN output (of a particular order) can be extracted:

s(1) that includes only the zero and first-order Volterra weights,

s(2) includes up to the second-order Volterra weights, and s(3)

that corresponds to a third-order model output. The following

equations show the number of parameters necessary to build

each of these outputs, for a given training set.

For the V(1) - NN model output, we have

Psð1Þ ¼ NI : ð10Þ

In this case, the number of parameters necessary to build

s(1) is each first-order Volterra weight that multiplies each

input variable.

For the second-order model V(2) - NN, we have the

following output

Psð2Þ ¼ Psð1Þ þ N2
I �

N2
I � NI

2
: ð11Þ

Neural Comput & Applic

123

Author's personal copy

The number of parameters necessary to build s(1) is sum-

med up together with the number of parameters necessary

for s(2) (the second-order Volterra weights). There is a

second-order weight for each input variable squared, plus

the cross-products between each input variable. With

respect to these last ones, since the symmetrical weights

are equivalent, they are considered only once. That is why

half of the cross-product weights are counted.

The number of parameters necessary to build V(3) - NN

is

Psð3Þ ¼ Psð2Þ þ N2
I ; ð12Þ

that is to say, the number of weights associated with s(2)

plus the product of each third-order weight corresponding

to each input variable, counting only once the symmetrical

weights.

As Volterra-NN can be applied to the compression of an

aMLP model, the output now will be an array of V-NN

outputs of different order. That is to say, for example, for

each MLP inside the array, three different-order V-NN

outputs can be obtained. In this case, the number of V-NN

models parameters has to be redefined as

PasðiÞ ¼ a� PsðiÞ ; ð13Þ

where i = 1, 2, 3. Therefore, the space saving measure SS

is calculated as

SS ¼ 1� PasðiÞ

P aMLP
: ð14Þ

3.3.2 Model selection: measure for trade-off solution

indication

Different solutions can be evaluated by calculating the

performance measures presented above. A V-NN model

output can have a value associated with the recognition rate

or to the space saving measures. However, sometimes these

values can differ from each other having even completely

opposite meaning and the problem of how determining the

best set of parameters arises. For instance, one solution can

have a high performance as regards RR but a very low SS

rate, or vice versa.

It is possible to consider the error for both measures as a

point in a coordinate axis graph, where the X axis repre-

sents es = 1 - SS, and the Y axes is associated with

er = 1 - RR. Therefore, a point can be defined as a pair

[es, er], being [0,0] the optimum. Figure 7 shows examples

of models and their associated errors in this new space. Let

us suppose a model 1 that has SS = 0.9 and RR = 0.7 and an

error to the optimum represented in the point M1 =

[0.1,0.3]. For model 2, where SS = 0.7 and RR = 0.9, the

error is M2 = [0.3,0.1]. Model 3, in which SS = 0.3 and

RR = 0.95, has an error M3 = [0.7,0.05], and a model 4,

with SS = 0.95 and RR = 0.3, has an error M4 = [0.05,0.7].

Considering these errors, a trade-off solution could be

found as the minimum Euclidean distance from the point

[es, er] to the optimum [0,0]. However, when calculating

these distances, it is possible to have cases with the same

result, but opposite values. For example, points M1 and M2

are equidistant from the main diagonal and have the same

Euclidean distance to the optimum; similarly to any other

models that could be located on the blue parabola depicted

in Fig. 7. However, M2 is a better classifier than M1, while

M1 is better compressed than the first one. Hence, it is

necessary to discriminate which of the two points is the

best solution for the problem under study.

Since FR is a classification problem, where it is rea-

sonably to think that a better RR would be considered more

important than SS, it is possible to infer that the trade-off

solution must always be above the diagonal of the coor-

dinate axes graph, because in a classification problem, it

could be more important to have a high recognition rate

than a high space savings rate. But, in some applications, it

can be needed a better compressed model than an excellent

classifier; in that case, SS would be more important than

RR.

In order to evaluate which is the trade-off solution (more

adequate model) for a problem, in the family of solutions

that arose from the experiences, we define a new measure q
that represents a trade-off between RR and SS as follows:

o ¼
ffi
ðcerÞ2 þ ðð1� cÞesÞ2

q
; ð15Þ

where c is a regularization parameter. Precisely, to be able

to perform the discrimination needed above, we propose to

modify the distance calculation including a regularization

parameter c. In order to consider c as a weight that allows

us to select between two models, its value can be modified

according to whether a better compressor or a better clas-

sifier is needed, with c � ½0; . . .; 1�.

Fig. 7 Trade-off measure determination by analyzing the possible

solutions of compressing a model

Neural Comput & Applic

123

Author's personal copy

When c = 0.5, both er and es are considered with the

same importance; the preference for RR is emphasized

with a c[0,5 (for example, red line in the figure), while

the preference for SS is obtained choosing a c\ 0.5 (for

example, green line in the figure). Applying (15) to each

model Mk, presented in Fig. 7 and considering RR as a

preference over SS with, for example c = 0.8, we obtain

oM1
¼ 0:241; oM2

¼ 0:1; oM3
¼ 0:146; and oM4

¼ 0:56.

Now it is possible to conclude, without any doubt, that the

best compromise solution is M2 for the presented example,

since it has the minimum distance to the optimum,

according to the new distance calculation proposed.

4 Results and discussion

The experimental results obtained on two well-known face

recognition problems are shown in this section. First of all,

the results on class by class recognition rates are presented.

Then, global RR and SS values for all the models obtained

are shown. At last, global results using the new measure for

model selection are presented.

4.1 Recognition performance for each class

From each aMLPI,H,O model considered in this study, their

corresponding zero-order, first-order, second-order, and

third-order Volterra weights have been extracted according

to Algorithm 1 and their corresponding array of Volterra-NN

outputs s(1), s(2) and s(3) have been obtained using Algo-

rithm 2. Table 1 presents the results obtained for the

models recognition rate (RRi) for each class i = 1, 2, 3

over the face recognition task, calculated over the ORL

Database test set, whereas Table 2 shows similar results

but calculated over the FERET database.

In Table 1, it is possible to see that, when the aMLP

classifier has 11 hidden neurons (3MLP11,11,1), the RR

values regarding class 1 (RR1) are between 91 and 94 %

for all 3V-NNsð1Þ ; 3V-NNsð2Þ and 3V-NNsð3Þ ; for the second

class (RR2), these values vary from 90 to 94 %, and they

are between 91 % and approximately 97 % for the third

class (RR3). As regards the second FR problem (Table 2)

when the aMLP classifier has 9 hidden neurons

(3MLP9,9,1), the RR values are similarly high for class 1, 2,

and 3.

Focusing on Table 1, it can be seen that a worse RR rate

is obtained for the classification problem if 3V-NNsð3Þ is

used instead of the original aMLP, specially for class 2.

This lower RR is, still, of 90 %. Furthermore, the

3V-NNsð1Þ output requires a significant lower number of

parameters than the original 3MLP11,11,1 classifier (a rela-

tion of 1:12). Similar conclusions can be drawn from

Table 2, in which the FERET Database is used: the sim-

plest V-NN output is, at the same time, the best one. But if

we take into account that the three 3MLPI,H,1-model

topologies in both cases, with NI = 11, NH = 11, 22, 33

for ORL and NI = 9, NH = 9, 18, 27 for FERET, are

solutions to the same problem, actually it is not necessary

Table 1 Recognition rates (RRi) for each class i = 1, 2, 3 for three aV-NN (a = 3) classifiers and their corresponding first-order s(1), second-

order s(2), and third-order s(3) outputs, for the AT&T Laboratories Cambridge ORL Database of Faces

RRi (%) 3MLP11,11,1 3MLP11,22,1 3MLP11,33,1

RR1 RR2 RR3 RR1 RR2 RR3 RR1 RR2 RR3

aMLPI,H,O 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3V-NNsð1Þ 94.28 93.94 97.47 92.76 92.25 91.92 97.14 91.92 94.28

3V-NNsð2Þ 91.92 92.09 91.25 92.76 91.24 94.27 95.29 94.44 90.57

3V-NNsð3Þ 91.58 90.23 91.58 90.23 89.06 88.89 86.19 90.74 93.26

Bold numbers highlight the best value of RR for each order V-NN output

Table 2 Recognition rates (RRi) for each class i = 1, 2, 3 for three aV-NN (a = 3) classifiers and their corresponding first-order s(1), second-

order s(2), and third-order s(3) outputs, for the facial recognition technology (FERET) database

RRi (%) 3MLP9,9,1 3MLP9,18,1 3MLP9,27,1

RR1 RR2 RR3 RR1 RR2 RR3 RR1 RR2 RR3

aMLPI,H,O 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3V-NNsð1Þ 94.11 94.27 95.62 86.70 95.62 93.94 88.38 91.41 96.63

3V-NNsð2Þ 91.08 88.38 91.58 88.89 87.88 94.11 92.25 90.07 95.29

3V-NNsð3Þ 90.40 85.35 93.10 89.56 85.52 85.86 91.92 84.34 85.01

Bold numbers highlight the best value of RR for each order V-NN output

Neural Comput & Applic

123

Author's personal copy

to consider just only one topology as the best solution. That

is to say, there are many possible solutions to the same

problem and it is possible to obtain the best according to

the goals that are followed. For instance, the best recog-

nition rate in ORL Database case is obtained by the first-

order Volterra-NN output for 3MLP11,33,1, which is

approximately as high as 97.50 %, while the best recog-

nition rate in FERET Database case is obtained by the first-

order Volterra-NN output for 3MLP9,27,1, achieving an RR

of 96.63 %.

Tables 3 and 4 show the space savings rate for the

models discussed in this paper and the mean values of the

recognition rate for these models. The upper part of each

table shows the number of parameters and global RR

measure for the three aMLP topologies. The second part of

the table shows parameters and performance measure val-

ues related to the Volterra-NN outputs. First of all, the

number of parameters needed for each neural classifier

architecture (PaMLP) involved in this study is shown at the

first row, while the number of Volterra weights needed for

each Volterra-NN model ðPasðiÞ Þ is shown in the first col-

umn. The values that fill the RR and SS columns are the

average recognition rate and space saving capabilities,

respectively, for each combination between a MLP clas-

sifier and the corresponding Volterra-NN output.

As stated before (Eqs. 8, 9), the number of parameters

required for the neural classifier depends not only on NI but

also on the number of neurons at the hidden layer NH, as

well as in the number of elements in the array. Therefore,

considering the ORL Database, the number of parameters

for 3MLP11,11,1 is 432, for 3MLP11,22,1 it is 861, and the

3MLP11,33,1 model has a total of 1,290 parameters (see

Table 3). Regarding the FERET Database, the number of

parameters for 3MLP9,9,1 is 300 and for 3MLP9,18,1 is 597,

and the 3MLP9,27,1 model has a total of 894 parameters

(see Table 4).

4.2 Recognition rate and space saving rate

In the case of the different-order Volterra-NN outputs, the

number of parameters only depends on the number of

inputs, as it is possible to see in (10), (11), and (12).

However, for an array, this number must be multiplied by

the array size. Therefore, the number of parameters for

3V-NNsð1Þ is 33, and the number of parameters needed for

3V-NNsð2Þ and 3V-NNsð3Þ are 231 and 594, respectively. In

the FERET Database, the number of parameters for

3V-NNsð1Þ is 27, and the number of parameters needed for

3V-NNsð2Þ and 3V-NNsð3Þ are 162 and 405, respectively.

Focusing on Table 3, it is possible to see that when

using 3V-NNsð1Þ instead of the 3MLP11,11,1 classifier, a

global recognition rate for the face recognition problem of

95.23 % can be obtained and a compression or space

saving rate of 92.36 % can be achieved. Almost half of

this space saving rate is obtained if the 3V- output is

used, and there is no compression when using 3V-NNsð3Þ .

Table 3 Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a = 3) classifiers and their corresponding first-order

s(1), second-order s(2), and third-order s(3) outputs, for the AT&T Laboratories Cambridge ORL Database of Faces

3MLP11,11,1 3MLP11,22,1 3MLP11,33,1

PaMLPI;H;O
! 432 861 1,290

RRð%Þ ! 100.00 100.00 100.00

3V-NN PasðiÞ RR (%) SS (%) RR (%) SS (%) RR (%) SS (%)

3V-NNsð1Þ 33 95.23 92.36 92.31 96.16 94.44 97.44

3V-NNsð2Þ 231 91.75 46.53 92.76 73.17 93.43 82.09

3V-NNsð3Þ 594 91.13 -37.50 89.39 31.01 90.07 53.95

Table 4 Global recognition rate (RR) and space saving (SS) comparison for three aV-NN (a = 3) classifiers and their corresponding first-order

s(1), second-order s(2), and third-order s(3) outputs, for the facial recognition technology (FERET) database

3MLP9,9,1 3MLP9,18,1 3MLP9,27,1

PaMLPI;H;O
! 300 597 894

RRð%Þ ! 100.00 100.00 100.00

3V-NN PasðiÞ RR (%) SS (%) RR (%) SS (%) RR (%) SS (%)

3V-NNsð1Þ 27 94.67 91.00 92.09 95.48 92.14 96.98

3V-NNsð2Þ 162 90.35 46.00 90.29 72.86 92.54 81.88

3V-NNsð3Þ 405 89.62 -35.00 86.98 32.16 87.09 54.70

Neural Comput & Applic

123

Author's personal copy

For the 3MLP11,22,1 model, the compression achieved by

the Volterra-NN models is higher because of the amount of

parameters associated with this model; in this case, the SS

value achieves a maximum of 96.16 % when the smallest

possible number of parameters is considered (a first-order

Volterra-NN output). A similar case is related to 3MLP11,33,1

model, where this trend is also verified. The results obtained

with the other dataset are quite similar (Table 4). For

instance, a global recognition rate of 94.67 % can be

obtained and a compression or space saving rate of 91 %

can be achieved when the 3V-NNsð1Þ is used instead of the

3MLP9,9,1 classifier.

From both Tables 3 and 4, it is possible to conclude that

an array of MLPs for classification can be well-compressed

by using Volterra-NN model, and this compression rate can

be, in some cases, even higher than 90 %. Moreover, very

high recognition rates are achieved. In fact, the aMLP

model architecture can be more and more complex and can

have many more hidden units, but the number of weights

needed to build each Volterra-NN output will remain the

same while the number of input variables of the problems

is the same, and this will certainly be reflected in even

higher space saving rates.

Furthermore, in some cases, these high compression

rates have not to be payed by lower model classification

rates. For example, for the 3MLP11,11,1 model in the ORL

Database, the best RR value is related to the 3V-NNsð1Þ

output, achieving 95.23 %, and having a space saving rate

of more than 92 %. The exactly same case can be seen in

the FERET Database, in which the 3MLP9,9,1 model

achieves an RR of 94.67 %, having a space saving rate of

91 %.

Considering the 3MLP11,22,1 case, in Table 3, the best

RR value is associated with the 3V-NNsð2Þ output, which

has only a SS of 73.17 %. But if a better compression

is necessary for this topology, it is possible to choose the

3V-NNsð1Þ which has a SS of 96.16 % and preserves a very

high RR value of 92.31 %. Even though the differences

are minimum between 3V-NNsð1Þ and 3V-NNsð2Þ outputs

regarding the second model in both tables, in Table 4, the

results are slightly different if it is considered the model

3MLP9,18,1. Here, the best RR and SS are obtained in the

same case, achieving a space saving of 95.48 % preserving

the 92.09 % of recognition ability if the 3V-NNsð1Þ output is

chosen.

For the 3MLP11,33,1 model, in Table 3, the best RR

value is associated with the 3V-NNsð1Þ Volterra-NN model

and it is possible to achieve a SS of 97.44 %. This is a very

interesting result, because with approximately less than

3 % of the parameters of the original aMLP classifier, the

classification capacity of 3V-NNsð1Þ is very high (94.44 %)

and very close to the aMLP model. This particular case can

be considered as the best overall result obtained in this

study, where the 3MLP11,33,1 classifier can be compressed

in almost a 98 % using the corresponding 3V-NNsð1Þ Vol-

terra-NN output without significantly loosing recognition

capability. Similar results can be highlighted in Table 4.

Once again, a small difference of 0.4 % can be seen as

regards the output (3V-NNsð1Þ or 3V-NNsð2Þ) that is related

to the best RR obtained in the 3MLP9,27,1 classifier. Despite

this, it is possible to state that the best overall result

obtained in this case is related to the 3V-NNsð1Þ Volterra-NN

output, in which the classifier can be compressed in almost

a 97 %, maintaining a 92 % of recognition rate.

We have compared our proposal against two classical

weight pruning algorithms (as simpler ways of compres-

sion) for MLP models, such as optimal brain damage

(OBD) [5] and optimal brain surgeon (OBS) [8]. Two

aspects have been compared: i) RR of each method while

maintaining the same number of parameters and ii) SS

considering approximately the same RR value for all the

three methods. In ORL database case, for the 33 parameters

used for 3V-NNsð1Þ in order to achieve an RR of 95.23 %,

OBS and OBD obtained RR values of 40.57 and 61.11 %,

respectively (see Table 5). As regards FERET database,

considering that 3V-NNsð1Þ needs 27 parameters for an RR

value of 94.67 %, OBD obtained an RR value of 38.38 %,

and OBS achieved an RR of 40.24 % for the same number

of parameters (see Table 7). With respect to compression,

as it is possible to see in Tables 6 and 8, for maintaining an

RR of 95 % in both databases, while V-NN needs

approximately 30 parameters, OBS and OBD require

approximately 200 parameters or more.

As a limitation of the aV-NN model, it can be noted that

the model reduces its compression capability as long as the

number of units in the hidden layer of the original MLP

decreases. That is to say, as smaller the number of hidden

neurons needed to solve the problem, less compression will

be obtained by the aV-NN model.

From the previous paragraphs, it can be seen that it is

necessary to look at both RR and SS tables, for each

dataset, to select the best model compressed, which can be

confusing. The next subsection will present this analysis in

Table 5 RR with the same SS in aV-NN, OBD, and OBS (ORL

Database)

3MLP11,11,1

PaMLPI;H;O
! 432

RRð%Þ ! 100.00

PasðiÞ RR (%) SS (%)

3V-NN(1) 95.23

OBD 33 40.57 92.36

OBS 61.11

Neural Comput & Applic

123

Author's personal copy

a simplified manner, through the use of the proposed q
trade-off measure.

4.3 Global results for model selection

Tables 9 and 10 present the q values for each 3V-NN,

considering three different c values. The rows group the

three possible 3V-NN outputs (s(1), s(2), and s(3)) for each

3MLP topologies that are shown, which vary in the number

of hidden neurons inside the single MLP model. The three

main columns represent the application of three different

c values, each one to emphasize the priority of SS over RR

(c = 0.25), RR over SS (c = 0.75), or both of them equally

measured (c = 0.5).

Taking into account the results at the first column

(c = 0.25) of Table 9 on the one hand, it is possible to

conclude that the best trade-off solution is reached

by 3V-NNsð1Þ when the topology of the MLP model is

3MLP11,33,1, achieving the minimum q value 0.024 (it is

the best SS (97.44 %) and its RR is up to 94.44 %). On

the other hand, focusing on the same column of Table 10,

similar conclusions can be drawn due to the best trade-off

solution is also reached by 3V-NNsð1Þ ; when the MLP

model is 3MLP9,27,1, achieving the minimum q value

0.030 (SS is 96.98 % while its RR is as higher as

92.14 %).

For the second column (c = 0.5), the trade-off solution

is associated with the same solution that in the previous

case: 3V-NNsð1Þ for the MLP model 3MLP11,33,1 in Table 9

and for the MLP model 3MLP9,27,1 in Table 10. For this

case, both measures at both experiences have high values

and determine the trade-off solution when there is no pri-

ority criteria between RR and SS rates.

In the third column, in which c = 0.75, the 3V-NNsð1Þ

model for the 3MLP11,11,1 model is the trade-off solution at

Table 9, achieving the minimum q value 0.041. Its RR

value is the best one (95.23 %), and its SS is up to

92.36 %. In Table 10, the 3V-NNsð1Þ model for the

3MLP9,9,1 model is also the trade-off solution for the third

column, with an RR value of 94.67 % and a SS of 91 %.

It is necessary to note that the last q in Table 9 has a

very close value (q = 0.042) for 3V-NNsð1Þ when the

topology of the MLP model is 3MLP11,33,1. But, in this last

case, SS is higher than RR and this situation is penalized by

the value of c, because of the priorities in model selection.

It is important to note that for all previously options,

3V-NNsð1Þ is the best trade-off model, which requires fewer

parameters to be represented and therefore is the smallest

one.

Another important point to be highlighted is that the

model selection step is a necessary task that has to be

Table 6 SS in aV-NN, OBD, and OBS, with the same RR (ORL

Database)

3MLP11,11,1

PaMLPI;H;O
! 432

RRð%Þ ! 100.00

PasðiÞ RR (%) SS (%)

3V-NN(1) 33 92.36

OBD 192 & 95 58.44

OBS 285 34.03

Table 7 RR with the same SS in aV-NN, OBD, and OBS (FERET

Database)

3MLP9,9,1

PaMLPI;H;O
! 300

RRð%Þ ! 100.00

PasðiÞ RR (%) SS (%)

3V-NN(1) 94.67

OBD 27 38.38 91.00

OBS 40.24

Table 8 SS in aV-NN, OBD, and OBS, with the same RR (FERET

Database)

3MLP11,11,1

PaMLPI;H;O
! 300

RRð%Þ ! 100.00

PasðiÞ RR (%) SS (%)

3V-NN(1) 27 91.00

OBD 204 &95 32.00

OBS 198 34.00

Table 9 Measure for trade-off solution q comparison for 3Volterra-

NN models corresponding to a 3MLP classifier, for the AT&T Lab-

oratories Cambridge ORL Database of Faces

q 3V-NN c1 = 0.25 c2 = 0.5 c3 = 0.75

3V-NNsð1Þ 0.059 0.045 0.041

3MLP11,11,1 3V-NNsð2Þ 0.402 0.271 0.147

3V-NNsð3Þ 1.031 0.689 0.350

3V-NNsð1Þ 0.035 0.043 0.058

3MLP11,22,1 3V-NNsð2Þ 0.202 0.139 0.086

3V-NNsð3Þ 0.518 0.349 0.190

3V-NNsð1Þ 0.024 0.031 0.042

3MLP11,33,1 3V-NNsð2Þ 0.135 0.095 0.067

3V-NNsð3Þ 0.346 0.236 0.137

The best value for each model is highlighted in bold

Neural Comput & Applic

123

Author's personal copy

performed in order to be certain of which model and

parameters are the most suited to a dataset. In this sense,

the q measure can help in the comparisons among models.

Furthermore, this measure could help finding the best

possible classifier for each class by combining different-

order V-NN outputs, obtained from different neural

topologies and configurations.

Finally, from the analysis of Tables 9 and 10, it can be

seen that consistent results are obtained with respect to the

detailed analysis performed on Tables 3 and 4, achieved,

however, in a more compact and simpler way, thanks to the

new proposed trade-off measure.

5 Conclusions and future work

This paper has shown a method to obtain a compact rep-

resentation of an array of MLPs using the different-order

aV-NN model outputs. Two algorithms that implement the

proposed approach have been explained. Algorithm 1

allowed extracting the Volterra kernels from the MLP

parameters (after training). Algorithm 2 allowed obtaining

the third-order (V(3) - NN) Volterra output by using the

Volterra weights when a new data point to be classified is

received. The aV-NN has been tested on a face recognition

task, obtaining almost the same accuracy than three dif-

ferent configurations of arrays of MLP classifiers. They

have been significantly compressed into less parameters.

Experimental results have demonstrated the capabilities of

the proposed V-NN model to compress a solution to the

face recognition problem with very high recognition and

space savings rates. Furthermore, a new trade-off measure

for model selection was proposed, allowing to consider in a

simple manner a priority of one rate over the other one.

This new measure q allowed us to evaluate different

solutions in a compact way by only considering one value,

which arose from the relationship between the recognition

rate and the space savings. This measure was useful for

indicating one of the obtained outputs as the best one,

considering both rates at the same time but with a different

weights.

Future work involves further application of the proposed

method to more complex problems, involving more classes

for classification and data having an evolution on time.

Besides, the V-NN compression capabilities could be tes-

ted on ensembles of different kinds of NN models. These

different NN classifier topologies should be further studied

in order to establish their impact on the compression

capabilities offered by the proposed Volterra-NN model

approach.

References

1. Aitkenhead MJ, McDonald AJS (2003) A neural network face

recognition system. Eng Appl Artif Intell 16(3):167–176

2. Bianchini M, Maggini M, Sarti L, Scarselli F (2005) Recursive

neural networks learn to localize faces. Pattern Recognit Lett

26(12):1885–1895

3. Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model com-

pression. In: KDD’06: proceedings of the 12th ACM SIGKDD

international conference on knowledge discovery and data min-

ing, ACM, pp 535–541

4. Capello D, Martinez C, Milone D, Stegmayer G (2009) Array of

multilayer perceptrons with no-class resampling training fr face

recognition. Revista Iberoamericana de Inteligencia Artificial

13(44):5–13

5. Cun YL, Denker JS, Solla SA (1990) Optimal brain damage. In:

Touretzky DS (ed) Advances in neural information processing

systems. Morgan Kaufmann, Los Altos, pp 598–605

6. Duda R, Hart P (2003) Pattern classification and scene analysis.

Wiley, London

7. Dzeroski S, Zenko B (2004) Is combining classifiers with stacking

better than selecting the best one? Mach Learn 54:255–273

8. Hassibi B, Stork DG, Com SCR (1993) Second order derivatives

for network pruning: optimal brain surgeon. In: Hanson SJ,

Cowan JD, Giles CL (eds) Advances in neural information pro-

cessing systems 5. Morgan Kaufmann, Los Altos, pp 164–171

9. Haykin S (1999) Neural networks: a comprehensive foundation.

Prentice-Hall, Englewood Cliffs

10. Jackson J (1991) A user’s guide to principal components. Wiley

series in probability and mathematical statistics: applied proba-

bility and statistics. Wiley, London. http://books.google.com.ar/

books?id=qhQYvH8CFQQC

11. Kirby M, Sirovich L (1990) Application of the Karhunen–Loeve

procedure for the characterization of human faces. IEEE Trans

Pattern Anal Mach Intell 12(1):103–108

12. Kong S, Heo J, Abidi B, Palk J, Abidi M (2005) Recent advances

in visual and infrared face recognition-a review. Comput Vis

Image Underst 97(1):103–135

13. Korenberg M, David R, Hunter I, Solomon J (2001) Parallel

cascade identification and its application to protein family pre-

diction. J Biotechnol 91:35–47

14. Li S, Jain A (eds) (2004) Handbook of face recognition. Springer,

Berlin

15. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-

linear least squares problems

Table 10 Measure for trade-off solutionq comparison for 3Volterra-NN

models corresponding to a 3MLP classifier, for the facial recognition

technology (FERET) database

q 3V-NN c1 = 0.25 c2 = 0.5 c3 = 0.75

3V-NNsð1Þ 0.069 0.052 0.046

3MLP9,9,1 3V-NNsð2Þ 0.406 0.274 0.153

3V-NNsð3Þ 1.013 0.677 0.346

3V-NNsð1Þ 0.039 0.046 0.060

3MLP9,18,1 3V-NNsð2Þ 0.205 0.144 0.100

3V-NNsð3Þ 0.510 0.345 0.196

3V-NNsð1Þ 0.030 0.042 0.059

3MLP9,27,1 3V-NNsð2Þ 0.137 0.098 0.072

3V-NNsð3Þ 0.341 0.236 0.149

The best value for each model is highlighted in bold

Neural Comput & Applic

123

Author's personal copy

http://books.google.com.ar/books?id=qhQYvH8CFQQC
http://books.google.com.ar/books?id=qhQYvH8CFQQC

16. Marquardt D (1963) An algorithm for least-squares estimation of

nonlinear parameters. SIAM J Appl Math 11(2):431–441

17. Martinez A, Kak A (2001) Pca versus lda. IEEE Trans Pattern

Anal Mach Intell 23(2):228–233

18. Orengo G, Colantonio P, Serino A, Giannini F, Stegmayer G,

Pirola M, Ghione G (2007) Neural networks and Volterra-series

for time-domain pa behavioral models. Int J RF Microw CAD

Eng 17(2):160–168

19. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret eval-

uation methodology for face-recognition algorithms. IEEE Trans

Pattern Anal Mach Intell 22:1090–1104

20. Rahman A, Verma B (2011) Novel layered clustering-based

approach for generating ensemble of classifiers. IEEE Trans

Neural Netw 22(5):781–792

21. Rubiolo M, Stegmayer G, Milone D (2010) Compressing a neural

network classifier using a volterra-neural network model. In:

IEEE international joint conference on neural networks (IJCNN),

Barcelona, Spain, pp 1–7

22. Salomon D (2007) Data compression: the complete reference.

Springer, Berlin

23. Stegmayer G, Chiotti O (2009) Volterra NN-based behavioral

model for new wireless communications devices. Neural Comput

Appl 18:283–291

24. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn

Neurosci 3(1):72–86

25. Volterra V (1959) Theory of functionals and integral and integro-

differential equations. Dover, New York

26. Zhang D, Wangmeng Z (2007) Computational intelligence-based

biometric technologies. IEEE Comput Intell Mag 2(2):26–36

27. Zhao W, Chellappa R, Phillips P, Rosenfeld A (2003) Face rec-

ognition: a literature survey. ACM Comput Surv 35(4):399–458

Neural Comput & Applic

123

Author's personal copy

	Compressing arrays of classifiers using Volterra-neural network: application to face recognition
	Abstract
	Introduction
	Volterra-neural network for neural networks compression
	Neural models for classification
	Volterra-NN model forward computation
	Volterra-NN as a classifier

	Materials and methods
	Face databases
	AT&T Laboratories: ORL
	FERET

	Classifier architecture
	Performance measures
	Recognition rate and space saving rate
	Model selection: measure for trade-off solution indication

	Results and discussion
	Recognition performance for each class
	Recognition rate and space saving rate
	Global results for model selection

	Conclusions and future work
	References

