Skip to main content

Advertisement

Log in

Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP

  • ISNN 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Sample misalignment exerts an important influence on training a rapid and accurate human detector, and it is a difficult problem to tackle with due to human articulation or manual annotation errors. Multiple instances learning method is an effective tool to deal with this difficulty without manual correction. In this paper, firstly, we propose a variable granularity HOG-CSLBP feature, which combines the human shape information with local texture information, and encodes spatial relationship in different granularity to improve its discriminative ability. Our new feature takes an advantage of the mutual complementarities of histogram of gradient and center-symmetric local binary patterns feature, which is adept at modeling human. Secondly, we present a Gentle MILBoost algorithm which utilizes the Newton update technique to get an optimal weak classifier that is able to discriminate complex distribution and is more stable in numerical computation. Experimental results based on INRIA, MIT-CBCL and TUD-Brussels datasets have showed superior performance of our method. Moreover, our method can achieve real-time speed in real application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Munder S, Gavrila DM (2006) An experimental study on pedestrian classification. IEEE Trans Pattern Anal Mach Intell 28(11):1863–1868

    Article  Google Scholar 

  2. David G (2009) Survey of Pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 32(7):1239–1258

    Google Scholar 

  3. Dollár P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  4. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc IEEE Conf Comput Vis Pattern Recognit 1:886–893

    Google Scholar 

  5. Zhu Q et al (2006) Fast human detection using a cascade of histograms of oriented gradients. Proc IEEE Conf Comput Vis Pattern Recognit 2:1491–1498

    Google Scholar 

  6. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y, Chen C (2008) Fast human detection using a novel boosted cascading structure with meta stages. IEEE Trans Image Process 17(8):1452–1464

    Article  MathSciNet  Google Scholar 

  8. Levi K, Weiss Y (2004) Learning object detection from a small number of examples: the importance of good features. Proc IEEE Conf Comput Vis Pattern Recognit 2:53–60

    Google Scholar 

  9. Gerónimo D, López AM, Ponsa D, Sappa AD (2007) Haar wavelets and edge orientation histograms for on-board pedestrian detection. In: Proceedings of the 3rd Iberian conference on pattern recognition and image analysis. pp 418–425

  10. Paisitkriangkrai S, Shen C, Zhang J (2008) Fast pedestrian detection using a cascade of boosted covariance features. IEEE Trans Circuits Syst Video Technol 18(8):1140–1151

    Article  Google Scholar 

  11. Pers J et al (2010) Histograms of optical flow for efficient representation of body motion. Pattern Recognit Lett 31(11):1369–1376

    Article  Google Scholar 

  12. Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. Eur Conf Comput Vis 2:428–441

    Google Scholar 

  13. Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: British machine vision conference, pp 1–11

  14. Wang X, Han T, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. IEEE Int Conf Comput Vis, pp 32–39

  15. Zhang J, Huang K, Yu Y, Tan T (2011) Boosted local structured HOG-LBP for object localization. Comput Vis Pattern Recognit, pp 1393–1400

  16. Yu Y, Zhang J, Huang Y, Zheng S, Ren W, Wang C, Huang K, Tan T (2010) Object detection by context and boosted HOG-LBP,ECCV workshop on PASCAL VOC 2010

  17. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2009) Object detection with discriminatively trained part based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  18. Leibe B, Leonardis A, Schiele B (2008) Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 77(1–3):259–289

    Article  Google Scholar 

  19. Lowe DG (1999) Object recognition from local scale-invariant features. IEEE Int Conf Comput Vis 1:1150–1157

    Google Scholar 

  20. Ferrari V, Jurie F, Schmid C (2010) From images to shape models for object detection. Int J Comput Vis 87(3):284–303

    Article  Google Scholar 

  21. Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors, IEEE Int Conf Comput Vis 1:90–97

    Google Scholar 

  22. Sabzmeydani P, Mori G (2007) Detecting pedestrians by learning shapelet features. IEEE Conf Comput Vis Pattern Recognit 1:90–97

    Google Scholar 

  23. Shen J, Sun C, Yang W, Sun Z (2011) Fast human detection based on enhanced variable size HOG features. Int Symp Neural Netw, part II, pp 342–349

  24. Heikki M, Pietikinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Proc Comput Vis Graph Image Process 4338:58–69

    Article  Google Scholar 

  25. Lazebnik S, Schmid C, Ponce J (2006) Beyond Bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Conf Comput Vis Pattern Recognit, vol 2, pp 2169–2178

  26. Zheng Y, Shen C, Huang X (2010) Pedestrian detection using center-symmetric local binary patterns. IEEE Int Conf Image Process, pp 3497–3500

  27. Babenko B (2008) Multiple instance learning: algorithms and applications. http://vision.ucsd.edu/~bbabenko/data/bbabenko_re.pdf

  28. Viola P, Platt J, Zhang C (2005) Multiple instance boosting for object detection. Adv Neural Inf Process Syst 18:1417–1424

    Google Scholar 

  29. Mason L, Baxter J, Bartlett P, Frean M (2000) Boosting algorithms as gradient descent. Adv Neural Inf Process Syst 12:512–518

    Google Scholar 

  30. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Google Scholar 

  31. Huang C, Ai H, Wu B, Lao S (2004) Boosting nested cascade detector for multi-view face detection. In: Proceedings of the 17th international conference on pattern recognition

  32. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  33. Lin Z, Davis LS (2008) A pose-invariant descriptor for human detection and segmentation 5305:423–436

    Google Scholar 

  34. Maji S, Berg AC, Malik J (2008) Classification using intersection kernel support vector machines is efficient. In: IEEE conference on computer vision and pattern recognition, pp 1–8

Download references

Acknowledgments

This project is supported by NSF of China (90820009, 61005008), China Postdoctoral Science Foundation (20100471000) and China Postdoctoral Special Science Foundation (201104505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Yang, W. & Sun, C. Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP. Neural Comput & Applic 23, 1937–1948 (2013). https://doi.org/10.1007/s00521-012-1153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1153-5

Keywords

Navigation