Skip to main content
Log in

FAIPSO: fuzzy adaptive informed particle swarm optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Conventional particle swarm optimization (PSO) is an appropriate optimization method, yet it suffers from some drawbacks. Trapping in local minimums or premature convergence of particles leads to unsatisfactory levels of optimization. In this paper, a new method for improving PSO is provided. In the proposed method (FAIPSO), the acceleration coefficients c 1 and c 2 are adaptively adjusted for each particle in each iteration. For the adaptive controlling of the acceleration coefficients, a fuzzy inference system is used. This fuzzy inference system comprises six inputs, two outputs, and ten rules. In order to reduce inertia weight (ω), a parabolic model is used. In addition to this, a range of vision (Mu) is defined for each of the particles and every one of the particles searches within this range. This range of vision changes adaptively. In order to adaptively control the range of vision, a fuzzy inference system is employed. This system has two inputs, one output, and 14 rules. To test the proposed method, 16 benchmarks, each inheriting special characteristics, are used. The performance of the proposed method was compared with that of ten types of PSOs (each of which are among the reputable works of the PSO subject). According to the results, the proposed method shows a good performance and is more appropriate than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shi Y, Eberhart R (1998) Parameter selection in particle swarm optimization. In: Proceedings of 7th annual conference on evolutionary programming, pp 591–600

  2. Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: Proceedings of congress on evolutionary computation, pp 1945–1950

  3. Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proceedings of congress on evolutionary computation, pp 1958–1962

  4. Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of IEEE international conference on evolutionary computation, pp 1507–1512

  5. Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of IEEE international conference on evolutionary computation, pp 81–86

  6. Angelin e PJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance difference. In: Proceedings of 7th annual conference on evolutionary programming, pp 601–610

  7. Prigogine (1967) Introduction to thermodynamics of irreversible processes. Wiley, NY

    Google Scholar 

  8. Haken H (1983) Synergetics. Springer, Berlin

    Book  Google Scholar 

  9. Xiao-Feng Xie, Wen-Jun Zhang, Zhi-Lian Yang (2002) A dissipative particle swarm optimization. Congress on evolutionary computation (CEC), Honolulu, pp 1456–1461

  10. Cedeno W, Agrafiotis DK (2003) Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. J Comput Aided Mol Des 17:255–263

    Article  Google Scholar 

  11. Shen Q, Jiang JH, Jiao CX, Huan SY, Shen GL, Yu RQ (2004) Optimized partition of minimum spanning tree for piecewise modeling by particle swarm algorithm. QSAR studies of antagonism of angiotensin II antagonists. J Chem Inf Comput Sci 44:2027–2031

    Article  Google Scholar 

  12. Lin W, Jiang J, Shen Q, Shen G, Yu R (2005) Optimized block-wise variable combination by particle swarm optimization for partial least squares modeling in quantitative structure-activity relationship studies. J Chem Inf Model 45:486–493

    Article  Google Scholar 

  13. Shen Q, Jiang JH, Jiao CX, Lin WQ, Shen GL, Yu RQ (2004) Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network: QSAR studies of bioactivity of organic compounds. J Comput Chem 25:1726–1735

    Article  Google Scholar 

  14. Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE transactions on evolutionary computation, pp 58–73

  15. Rasmussen TK, Krink T (2003) Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid. Biosystems 72:5–17

    Article  Google Scholar 

  16. Veeramachaneni K, Peram T, Mohan CK, Osadciw LA (2003) Optimization using particle swarms with near neighbor interactions. In: Lecture notes in computer science (LNCS) No 2723: proceedings of the genetic and evolutionary computation conference (GECCO) Chicago, pp 110–121

  17. Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation 2002 Honolulu, Hawaii

  18. Hu X, Eberhart RC (2002a) Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of the IEEE congress on evolutionary computation 2002 (CEC 2002) Honolulu, Hawaii

  19. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  20. Li XD, Engelbrecht AP (2007) Particle swarm optimization: an introduction and its recent developments. In: Proceedings of genetic evoloution computation conference, pp 3391–3414

  21. Ho S-Y, Lin H-S, Liauh W-H, Ho S-J (2008) OPSO: orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans Syst Man Cybern A Syst Humans 38(2):288–298

    Article  Google Scholar 

  22. Liu B, Wang L, Jin YH (2007) An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern B Cybern 37(1):18–27

    Article  Google Scholar 

  23. Ciuprina G, Ioan D, Munteanu I (2002) Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans Mag 38(2):1037–1040

    Article  Google Scholar 

  24. Yamaguchi T, Yasuda K (2006) Adaptive particle swarm optimization: self-coordinating mechanism with updating information. In: Proceedings of IEEE international conference on system man, cybernet, Taipei, pp 2303–2308

  25. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Adaptive multi-objective particle swarm optimization algorithm. In: Proceedings of IEEE congress on evolutinary computation, Singapore, pp 2281–2288

  26. Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of IEEE congress on evolutinary computation, Anchorage, pp 84–89

  27. Juang CF (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B Cybern 34(2):997–1006

    Article  Google Scholar 

  28. Chen YP, Peng WC, Jian MC (2007) Particle swarm optimization with recombination and dynamic linkage discovery. IEEE Trans Syst Man Cybern B Cybern 37(6):1460–1470

    Article  Google Scholar 

  29. Andrews PS (2006) An investigation into mutation operators for particle swarm optimization. In: Proceedings of IEEE congress on evolutinary computation, Vancouver, pp 1044–1051

  30. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: Proceedings of IEEE congress on evolutinary computation, pp 522–528

  31. Zhang WJ, Xie XF (2003) “DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of IEEE conference system, man, cybernetics, Oct. 2003, pp 3816–3821

  32. van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  33. Ratnaweera, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  34. Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224

    Article  MathSciNet  Google Scholar 

  35. Brits R, Engelbrecht AP, van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of 4th Asia-Pacific conference on simulation evoloution learning, pp 692–696

  36. Brits R, Engelbrecht AP, van den Bergh F (2007) Locating multiple optima using particle swarm optimization. Appl Math Comput 189(2):1859–1883

    Article  MathSciNet  MATH  Google Scholar 

  37. Parrott D, Li XD (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458

    Article  Google Scholar 

  38. Zhi-Hui Zhan, Jun Zhang, Yun Li, Henry Shu-Hung Chung (2009) adaptive particle swarm optimization. IEEE Transactions On Systems, Man, And Cybernetics—part B: Cybernetics, pp 1083–4419

  39. Shi Y, Eberhart RC (2001a) Fuzzy adaptive particle swarm optimization. In: Proceedings of congress on evolutionary computation 2001, IEEE Service Center, Seoul, Korea, Piscataway

  40. Kang Q, Wang L, Wu Q (2006) Research on fuzzy adaptive optimization strategy of particle swarm algorithm. Int J Inform Technol 12(3)

  41. Liu H, Abraham A, Zhang W (2007) Fuzzy adaptive turbulent particle swarm optimization. Int J Innov Comput Appl 1(1)

  42. Niu B, Zhu Y, Xian X, Shen H (2007) A multi-swarm optimizer based fuzzy modeling approach for dynamic systems processing. Elsevier, Amsterdam

    Google Scholar 

  43. Zahiri SH, Seyedin SA (2007) Swarm intelligence based classifiers. J Franklin Inst 344:362–376

    Article  MATH  Google Scholar 

  44. Abdelbar AM, Adbelshahid S, Wunsch DC (2005) Fuzzy PSO: a generalization of particle swarm optimization. In: Proceedings of international joint conference on neural networks, Montreal

  45. Liu H, Abraham A (2007) A hybrid fuzzy variable neighborhood particle swarm optimization algorithm for solving quadratic assignment problems. J Univ Comput Sci 13(7):1032–1054

    Google Scholar 

  46. Afsahi Z, Meybodi M (2010) Improving cooperative PSO using fuzzy logic. Research and development in intelligent systems XXVI, Springer, London, pp 219–232

  47. Juang YT, Tung SL, Chiu HC (2010) Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions. Inform Sci J

  48. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural network, vol 4, Perth, pp 1942–1948

  49. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of 6th international symposium on micromachine human science, Nagoya, pp 39–43

  50. Kennedy J, Eberhart RC, Shi YH (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

    Google Scholar 

  51. Wilson EO (1975) Sociobiology: the new synthesis. Belknap Press, Cambridge

    Google Scholar 

  52. Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of IEEE international conference on evolutionary computation, pp 303–308

  53. Mehdi Neshat, Masoud Rezaei (2010) AIPSO: adaptive informed particle swarm optimization. IEEE 5th international conference intelligence systems (SI)

  54. Iwasaki N, Yasuda K, Ueno G (2006) Dynamic parameter tuning of particle swarm optimization. IEEJ Trans Elec Elect Eng 1:353–363

    Article  Google Scholar 

  55. Montes de Oca MA, Pena J, Stutzle T, Pinciroli C, Dorigo M (2009) Heterogeneous particle swarm optimizers. In: Proceedings of IEEE congress on evolutionary computation, pp 698–705

  56. Pant M, Radha T, Singh VP (2007) A new particle swarm optimization with quadratic interpolation. In: Proceedings of IEEE international conference on computational intelligence and multimedia applications, pp 55–60

  57. Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings of IEEE on swarm intelligence symposium, pp 68–75

  58. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore

  59. Salomon R (1996) Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39(3):263–278

    Article  Google Scholar 

  60. Shi Y, Eberhart RC (1998) A modified particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 69–73

  61. Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm scheme. Lect Series Comput Comput Sci 1:868–873

    MathSciNet  Google Scholar 

  62. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  63. Zhan ZH, Zhang J, Li Y, Shi YH (2010) Orthogonal learning particle swarm optimization. IEEE transactions on evolutionary computation, Issue: 99

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Neshat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neshat, M. FAIPSO: fuzzy adaptive informed particle swarm optimization. Neural Comput & Applic 23 (Suppl 1), 95–116 (2013). https://doi.org/10.1007/s00521-012-1256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1256-z

Keywords

Navigation