Skip to main content
Log in

Numerical treatment for solving one-dimensional Bratu problem using neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, numerical treatment is presented for the solution of boundary value problems of one-dimensional Bratu-type equations using artificial neural networks. Three types of transfer functions including Log-sigmoid, radial basis, and tan-sigmoid are used in the neural networks’ modeling. The optimum weights for all the three networks are searched with the interior point method. Various test cases of Bratu-type equations have been simulated using the developed models. The accuracy, convergence, and effectiveness of the methods are substantiated by a large number of simulation data for each model by taking enough independent runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacobsen J, Schmitt K (2002) The Liouville–Bratu–Gelfand problem for radial operators. J Differ Equ 184:283–298

    Article  MATH  MathSciNet  Google Scholar 

  2. Buckmire R (2003) On exact and numerical solutions of the one-dimensional planar Bratu problem. Mathematics Department, Occidental College, Los Angeles, CA 90041-3338, USA. http://faculty.oxy.edu/ron/research/bratu/bratu.pdf

  3. Frank-Kamenetski DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, Princeton

    Google Scholar 

  4. Gelfand IM (1963) Some problems in the theory of quasi-linear equations. Trans Am Math Soc Ser 2:295–381

    Google Scholar 

  5. Wan YQ, Guo Q, Pan N (2004) Thermo-electro-hydrodynamic model for electrospinning process. Int J Nonlinear Sci Numer Simul 5(1):5–8

    Article  Google Scholar 

  6. Buckmire R (2004) Application of a Mickens finite-difference scheme to the cylindrical Bratu–Gelfand problem. Numer Methods Partial Diff Equ 20(3):327–337

    Article  MATH  MathSciNet  Google Scholar 

  7. de Mounim AS, Dormale BM (2006) From the fitting techniques to accurate schemes for the Liouville–Bratu–Gelfand problem. Numer Methods Partial Diff Equ 22(4):761–775

    Article  MATH  Google Scholar 

  8. Syam MI, Hamdan A (2006) An efficient method for solving Bratu equations. Appl Math Comput 176:704–713

    Article  MATH  MathSciNet  Google Scholar 

  9. Caglar H, Caglar N, Özer M, Valaristos A, Anagnostopoulos AN (2010) B-spline method for solving Bratu’s problem. Int J Comput Math 87(8):1885–1891

    Article  MATH  MathSciNet  Google Scholar 

  10. Deeba E, Khuri SA, Xie S (2000) An algorithm for solving boundary value problems. J Comput Phys 159:125–138

    Article  MATH  MathSciNet  Google Scholar 

  11. Wazwaz AM (2005) Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl Math Comput 166:652–663

    Article  MATH  MathSciNet  Google Scholar 

  12. Boyd JP Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl Math Comput 142:189–200

  13. Abbasbandy S, Shivanian E (2010) Prediction of multiplicity of solutions of nonlinear boundary value problems: novel application of homotopy analysis method. Commun Nonlinear Sci Numer Simulat 15:3830–3846

    Article  MATH  MathSciNet  Google Scholar 

  14. Feng X, He Y, Meng J (2008) Application of homotopy perturbation method to the Bratu-type equations. Topol Methods Nonlinear Anal 31(2):243–252

    MATH  MathSciNet  Google Scholar 

  15. Wang MC, Zhao XS, Liu X (2008) Analytic solutions of a class of nonlinearly dynamic systems. J Phys Conf Ser 96:1–7

    Google Scholar 

  16. Hassan IHAH, Erturk VS (2007) Applying differential transformation method to the one-dimensional planar Bratu problem. Int J Contemp Math Sci 2:1493–1504

    MATH  MathSciNet  Google Scholar 

  17. Khuri SA (2004) A new approach to Bratu’s problem. Appl Math Comput 147:131–136

    Article  MATH  MathSciNet  Google Scholar 

  18. Aregbesola YAS (2003) Numerical solution of Bratu problem using the method of weighted residual. Electron J South Afr Math Sci 3(1):1–7

    Google Scholar 

  19. He JH (2006) Some asymptotic methods for strongly nonlinear equations. Int J Modern Phys B 20(10):1141–1199

    Article  MATH  Google Scholar 

  20. He JH (2008) Variational approach to the Bratu’s problem. J Phys Conf Ser 96:012087

    Article  Google Scholar 

  21. Jalilian R (2010) Non-polynomial spline method for solving Bratu’s problem. Comput Phys Commun 181:1868–1872

    Article  MATH  MathSciNet  Google Scholar 

  22. Boyd JP (2011) One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl Math Comput 217:5553–5565

    Article  MATH  MathSciNet  Google Scholar 

  23. Abbasbandy S, Hashemi MS, Liu C-S (2011) The Lie-group shooting method for solving the Bratu equation. Commun Nonlinear Sci Numer Simul 16:4238–4249

    Article  MATH  MathSciNet  Google Scholar 

  24. Aarts LP, Veer PVD (2001) Neural network method for solving the partial differential equations. Neural Process Lett 14:261–271

    Article  MATH  Google Scholar 

  25. Rarisi DR et al (2003) Solving differential equations with unsupervised neural networks. J Chem Eng Process 42:715–721

    Article  Google Scholar 

  26. Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations. Appl Soft Comput 9(1):20–29

    Article  Google Scholar 

  27. Raja MAZ, Khan JA, Qureshi IM (2010) A new Stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250. doi:10.1007/s10472-010-9222-x

    Article  MATH  MathSciNet  Google Scholar 

  28. Raja MAZ, Khan JA, Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using Evolutionary computational intelligence. Math Probl Eng 675975:1–18

    Article  MathSciNet  Google Scholar 

  29. Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol oscillator. Int J Phys Sci 6(31):7247–7261

    Google Scholar 

  30. Raja MAZ, Ahmad SI, Samar R (2012) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput Appl. doi:10.1007/s00521-012-1170-4

    Google Scholar 

  31. Raja MAZ, Khan JA, Ahmad SI, Qureshi IM (2013) Numerical treatment of Painleve equation I using neural networks and stochastic solvers. Springer, book series, studies in computational intelligence, 442, innovations in intelligent machines-3, chapter 7, pp 103–117

  32. Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of nonlinear Emden-Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207. doi:10.1007/s10472-011-9272-8

    Article  MathSciNet  Google Scholar 

  33. Khan JA, Raja MAZ, Qureshi IM (2011) Stochastic computational approach for complex non-linear ordinary differential equations. Chin Phys Lett 28(2):020206. doi:10.1088/0256-307X/28/2/020206

    Article  MathSciNet  Google Scholar 

  34. Khan JA, Raja MAZ, Qureshi IM (2011) Novel approach for van der Pol oscillator on the continuous time domain. Chin Phys Lett 28(11):110205

    Article  Google Scholar 

  35. Karmarkar N (1984) A new polynomial time algorithm for linear programming. Combinatorica 4:373–395

    Article  MATH  MathSciNet  Google Scholar 

  36. Wright SJ (1997) Primal-dual interior-point methods. SIAM, Philadelphia. ISBN 0-89871-382-X

    Book  MATH  Google Scholar 

  37. Wright MH (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42:39–56

    Article  MATH  Google Scholar 

  38. Yana W, Wenb L, Lic W, Chunga CY, Wong KP (2011) Decomposition–coordination interior point method and its application to multi-area optimal reactive power flow. Int J Electr Power Energy Syst 33(1):55–60

    Article  Google Scholar 

  39. Duvvuru N, Swarup KS (2011) A hybrid interior point assisted differential evolution algorithm for economic dispatch. IEEE Trans Power Syst 26(2):541–549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, M.A.Z., Ahmad, SuI. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Comput & Applic 24, 549–561 (2014). https://doi.org/10.1007/s00521-012-1261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1261-2

Keywords

Navigation