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Abstract. This paper presents a study on the optimisation control of a reactive polymer composite 

moulding process using ant colony optimisation and bootstrap aggregated neural networks. In 

order to overcome the difficulties in developing accurate mechanistic models for reactive polymer 

composite moulding processes, neural network models are developed from process operation data. 

Bootstrap aggregated neural networks are used to enhance model prediction accuracy and 

reliability. Ant colony optimisation is able to cope with optimisation problems with multiple local 

optima and is able to find the global optimum. Ant colony optimisation is used in this study to find 

the optimal curing temperature profile. In order to enhance the reliability of the optimisation 

control policy, model prediction confidence bound offered by bootstrap aggregated neural 

networks is incorporated in the optimisation objective function so that unreliable predictions are 

penalised. The proposed method is tested on a simulated reactive polymer composite moulding 

process.  

Keywords: neural networks, ant colony optimisation, reactive polymer composite 

moulding, optimisation control. 

1   Introduction 

Polymer composite materials have achieved widespread use in industry, including automobile, 

aviation and construction. Their manufacture involves thermoset curing which is dominated by 

complex dynamics and trial and error has been the only practical optimisation method to improve 

process operation [1]. This presents the opportunity for additional bottom-line economic benefit by 

application of computer based optimisation control methods, which require accurate process 

models.  

 

The development of detailed mechanistic models for reactive polymer composite moulding 

processes is generally time consuming and effort demanding. The determination of many kinetic 

parameters in the mechanistic models is a difficult task. Thus, developing detailed mechanistic 

models would not be suitable for agile manufacturing processes where products and raw materials 
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often change in response to market condition and customer demands. Data based models should 

therefore be utilised. Neural networks have been shown to be able to approximate any nonlinear 

functions [2] and have been applied to nonlinear process modelling [3-4].  

 

A limitation of conventional neural networks is that they can lack generalisation capability. That 

is they can give very good performance on the training data but not so good, or even poor, 

performance on unseen data. There are several approaches for enhancing neural network 

generalisation capability, such as training with regularisation [5], early stopping [6], Bayesian 

learning [7], and combining multiple neural networks [8-10]. Among these approaches, combining 

multiple neural networks is the most effective one. One approach to combining multiple neural 

networks is through developing multiple neural networks on bootstrap re-sampling replications of 

the original training data [11]. Bootstrap aggregated neural networks (BAGNET) are shown to 

give more reliable and accurate prediction performance on unseen data than single neural networks 

[12]. Furthermore, model prediction confidence bounds can be calculated from the multiple neural 

network predictions [12]. The idea of bootstrap aggregation has also been incorporated with other 

nonlinear modeling tools such as supporting vector machine (SVM) [13] and Gaussian processes 

[14].  

 

Conventional gradient based optimisation methods can be trapped in local minima, especially 

when highly nonlinear optimisation objective functions are involved. To overcome this problem, 

population based optimisation methods such as genetic algorithms [15], particle swarm 

optimisation [16], and ant colony optimisation (ACO) [17] can be used.  

 

This paper presents a study on using ACO and BAGNET for the optimisation control of a 

reactive polymer composite moulding process. The paper is organised as follows. Section 2 

presents a simulated reactive polymer composite moulding process and its control objective. 

Section 3 presents ACO for optimisation. Modelling of a reactive polymer composite moulding 

process using BAGNET is presented in Section 4. A reliable optimisation control method based on 

ACO and BAGNET is presented in Section 5 together with application results. The last section 

concludes this paper.  

2   A Simulated Reactive Polymer Composite 

Moulding Process 

The optimisation control strategy is tested on simulation using the mechanistic model given in 

reference [1]. The basic kinetic model is a combination of autocatalytic and nth order reaction 

terms with Arrhenius dependence of the rate constants: 
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where a is the degree of cure, T is the curing temperature,  R is the perfect gas content, P1 (= - 

71.46) and P2 (=-61.25) are the activation energies, P3 (=2.54×10
4
) and P4 (=6.05×10

4
) are the 

rates constants, P5 (=0.492), P6 (=1.252),  and P7 (=1.750) are the reaction orders. Two improved 

models incorporating glass transition temperature and a diffusion term are given in [1]. The 

improved model is used in this study and the model parameters can be found in [1]. The simulated 

reactive polymer composite moudling process is concerned with polymer composite moulding 

using single component epoxy resin. This type of polymer composite is commonly used in 

produce automobile parts [1].  

 

The control objective is to maximise the degree of cure at the end of the batch. Only when the 

degree of cure is close to 1 the mould can be opened, otherwise the product could deform leading 

to defective products. The control policy consists of a temperature setpoint profile, U, throughout 

the batch cycle. The batch duration is divided into N equal stages and the temperature is kept 

constant at each stage.  Thus a control profile can be represented as the following vector, 

 

U = [ U(1), U(2), … , U(N) ]
T
      (2)

 

where U(j) is the temperature setpoint at the jth stage.  

3   Ant Colony Optimisation 

3.1 Introduction of ant colony optimisation 

The ACO meta-heuristic, based on the metaphor of foraging ants, was proposed by Dorigo and 

colleagues in the early 1990s [17]. It is a type of swarm intelligence, in which simple agents 

interact among themselves with no central control system. These and other stochastic optimisation 

techniques, such as evolutionary algorithms, are renowned for their ability to find global optima. 

This is in contrast to their traditional gradient-based counterparts, which tend to get trapped in 

local optima.   

 

ACO is inspired by the behaviour of ants which are able to find the shortest path between the 

nest and food source. The ants are almost blind and therefore initially move about randomly. Each 

ant deposits pheromone while it moves, producing a trail. If another ant comes close, it can smell 

the pheromone and correspondingly follow the trail, depositing its own pheromone. Therefore the 

greater the pheromone, the more likely a close ant is to pursue the trail. Fig. 1 illustrates the 

selection a shorter route. When the ants approach (Fig. 1 A), the upper and lower paths are 

selected with equal probability (Fig. 1 B), as there are no pheromone deposits, shown as dashed 

lines. Assuming the ants move at the same speed, a shorter route has more pheromone at its end 

(Fig. 1 C), and is therefore more likely to be tracked by returning ants which approach it (Fig. 1 

D). The ants quickly converge on the shortest path via this positive feedback mechanism, also 

termed “autocatalysis”. This behaviour is practised by the artificial ants of ACO in finding optima. 
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Fig. 1. How real ants select shorter path  

 

When the food source exhausts, the ants no longer deposit pheromone on the path. The 

pheromone evaporates gradually, reducing the probability of successive ants following it, and 

hence encourages random search for new sources. This analogy is utilised in ACO for artificial 

ants ruling out local optima and searching for the global one. 

 

Not many ant-inspired algorithms have been proposed for continuous problems. The first was 

by Bilchev and Parmee [18, 19] for local search. It was extended to global search and coined, 

Continuous ACO (CACO), by Woodrich and Bilchev [20]. CACO was found to be the best 

performing algorithm in terms of least function evaluations and was used in this study. The CACO 

algorithm [20, 21] is reviewed in the next subsection.  

 

3.2 Continuous ACO 

To apply ACO to continuous optimisation problems, the decision variable (x) domain has to be 

first divided into a specific number of, for example, R, randomly distributed regions. The algorithm 

employs A number of ants, of which G explore globally, while the remainder, L scout locally. The 

regions are initially randomly positioned within the problem space. Then global and local searches 

are performed iteratively, and work in tandem. The former finds promising regions, while the latter 

fine-searches them. This facilitates finding the global optimum. 

3.2.1Global Search 

The global search entails replacing the G weakest regions (with the highest objective function 

values) via two genetic algorithm (GA) inspired processes, termed ‘Random Walk’ and ‘Trail 

Diffusion’. The new ‘child’ regions are obtained using information of ‘parent’ regions, selected 

from the (R-G) stronger regions (with lower objective functions). Considering that the regions are 

initially distributed throughout the problem space, this method iteratively eliminates less fit 

regions. With new children determined via stochastic operations on positions of more fit parents, 

convergence occurs with some diversity over the iterations.  

 

Random Walk comprises two steps, ‘Crossover’ and ‘Mutation’. In Crossover, the first element 

of the new child region’s location vector is equal to that of a parent region, randomly selected from 
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the fitter regions. Subsequent elements are each set, with a crossover probability, CP, to that of 

another random parent of the stronger regions, else it is assigned the corresponding element of the 

first parent. Note that if CP is 1, all child elements are from unique parents, while if 0, the child is 

the same as the first parent. Thus crossover produces new regions from a possible diversity of the 

fitter ones. 

 

After inheriting stochastically from parents, the children’s ‘genes’ are then mutated.  Each 

element is modified, with a mutation probably, MP. This involves randomly adding or subtracting 

a step of size, Δ: 

 )1(),( )1( bI

ss rMMI         (3) 

where MS is the maximum step size which will keep the element within bounds, r is a random 

number in the interval [0, 1], I is ratio of current iteration number, n, to number of maximum 

iterations, nmax, and b is a positive parameter. 

 

Note that MS is effectively the distance of the element from the upper bound, if Δ is being 

added, or from the lower bound for subtraction of Δ. I is 0 at the start, and 1 at the end; it therefore 

reduces the possible extent of the mutation over the iterations, and facilitates convergence of the 

regions towards a final solution. The parameter b influences the degree of nonlinearity of the 

decrease in step size over the iterations. 

 

While in Random Walk, one parent is chosen at a time, Trail Diffusion selects a pair from the 

set of fitter regions.  The probability, CP, is again used to decide when new parents are selected. 

The i
th

 element, xi(child), is set to one of the following options: 

 

1. the respective element, xi(parent1), of the first parent 

2. the corresponding element, xi(parent2), of the second parent 

3. a weighted combination of the parents’ respective elements: 

       21 1 parentxparentxchildx iii     (4) 

where α is a random number in the interval [0, 1]. 

 

The probability of option 3 is MP, while the remainder, (1 – MP), is equally shared for options 1 

and 2. Thus options 1 and 2 each occurs with the probability of (1 – MP)/2. 

 

After the new regions are generated, their pheromone trail values are calculated as the average 

of their parents’. In this, the child’s trail value lies somewhere within the parents’ values. Given 

that local ants are attracted to a region based on its pheromone deposit, using an average of the 

parents’ values will ensure that local ants are not unfairly drawn to the child nor deterred from it. 

3.2.2 Local Search 

After more promising regions are found in the global search, L regions are probabilistically 

chosen for local search. In Woodrich and Bilchev’s original version of the CACO [20], the regions 

were selected from all R regions. However, a modification for faster convergence by Mathur [21] 
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is utilised, where the ants pick from the strongest S % of R regions. The probability of the j
th

 

region being chosen is: 
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where τj is the j
th

 region’s pheromone trail value, n is the current iteration number, and k designates 

the set of regions from which the j
th

 is chosen. 

 

A local ant moves a short distance, d, determined from the region’s age, age. The region’s age 

represents the length of survival of the region. The minimum age is 0 at the start of the iterations, 

and at which there is a corresponding maximum distance, dmax. At the maximum age, agemax, the 

distance is at its minimum, dmin. The maximum age corresponds to the termination of the ACO 

algorithm. Linear interpolation is applied to find d at current iteration, n, for the j
th

 region, dj(n): 
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     (6) 

 

The direction of the move is the same as that by the previous local ant at the region, if improved 

fitness was then found. This follows from stochastic hill-climbing, where the direction of 

promising results is maintained. Else, the direction is random.  

 

Fitness is evaluated at the ant’s position after the move. If it increased, the region is moved to 

this position, pheromone is added proportional to the increase, and the region’s age is 

decremented. Thus promising results encourage future search in the same direction, increasing the 

distance of the next move. Otherwise, the age is incremented, reducing the extent and relative 

likelihood of later searches due to pheromone evaporation.  

3.2.3 Pheromone Evaporation 

Pheromone trails evaporate at the end of each iteration. The j
th

 region’s value at the end of the 

n
th

 iteration, and hence during the (n+1)
th

, τj(n+1), is given by: 

 

   nn jj  1       (7) 

where ρ is the evaporation rate. 

 

In future iterations, regions which did not receive pheromone deposits are less likely to be 

searched locally. It is similar to ants losing interest as food exhausts, encouraging search 

elsewhere. This helps escaping from local optima. 

 

Outline of Algorithm 

1. Initialise parameters 
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2. Randomly generate R regions’ locations 

3. Calculate fitness of regions 

4. Global search: 

a. send global ants to G weakest regions 

b. create G new regions via Random Walk and Trail Diffusion: 

i. Random Walk – construct RW new regions by Crossover with probability, 

CP, then apply Mutation with probability, MP 

ii. Trail Diffusion – construct TD new regions, with probability, CP, from 2 

randomly selected parents 

c. update trail values and fitness of new regions 

5. Local search: 

a. send local ants to L of strongest S % of regions  

b. move each ant a short distance, size of which is proportional to region’s age; 

direction is same as by last region’s local ant, if fitness improved then, otherwise 

direction is random 

c. if fitness improves, move region to ant’s location, update pheromone trail value 

proportional to fitness improvement, update fitness, and decrement age; otherwise, 

increment age 

6. Repeat steps 4 and 5 until maximum number of iterations. Optimum is region location with 

maximum fitness 

 

3.2.4 Handling constraints 

Constraints can be handled using the penalty function method. The approach used by Mathur 

[21] was adopted for including constraints. This involved calculating the constraint violation, v, as:  

   





 




otherwise  :0      

0for   :
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xgxg
xv

i

i

i
    (8) 

where i
th

 constraint is gi(x) ≤ 0. 

 

The objective function was modified to include v, which is penalised by a weight, wv: 

     2)(, xvwxfvxJ v       (9) 

where J(x,v) is the new constrained objective function, f(x) is the original unconstrained 

objective function, and wv is gradually and linearly increased over the iterations from an initially 

small value. 
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4   Modelling Using Bootstrap Aggregated Neural 

Networks 

4.1   Bootstrap aggregated neural networks 

A diagram of bootstrap aggregated neural networks is shown in Fig. 2, where several neural 

network models are developed to model the same relationship. Instead of selecting a “best” single 

neural network model, these individual neural networks are combined together to improve model 

accuracy and robustness. The overall output of the aggregated neural network is a weighted 

combination of the individual neural network outputs. This can be represented by the following 

equation. 

  f X w f X
i i

i

n

( ) ( )



1

      (10) 

where f(X) is the aggregated neural network predictor, fi(X) is the ith neural network output, wi is 

the aggregating weight for combining the ith neural network, n is the number of neural networks, 

and X is a vector of neural network inputs. Proper determination of the stacking weights is 

essential for good modelling performance. A popular choice of stacking weights is simple 

averaging, i.e. the stacked neural network output is an average of the individual network outputs. 

Since the individual neural networks are highly correlated, appropriate stacking weights could be 

obtained through principal component regression (PCR) [10]. Instead of using constant stacking 

weights, the stacking weights can also dynamically change with the model inputs [22, 23].  

 

Another advantage of bootstrap aggregated neural network is that model prediction confidence 

bounds can be calculated from individual network predictions [12]. The standard error of the ith 

predicted value is estimated as 

2/12

1

})];();([
1

1
{)( 


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b

b

iie xyWxy
n

x                  (11) 

where y(xi; .) =  

n

b

b

i nWxy
1

/);(  and n is the number of neural networks in an aggregated 

neural network. Assuming that the individual network prediction errors are normally distributed, 

the 95% prediction confidence bounds can be calculated as y(xi; .)  1.96e(xi). A narrower 

confidence bound, i.e. smaller e(xi), indicates that the associated model prediction is more 

reliable. 
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X Y

 

Fig. 2. A bootstrap aggregated neural network 

 
 

Fig. 3. Simulated process data 

4.2   Modelling of the degree of cure using bootstrap aggregated 

neural networks 

Developing data based models from limited process data is of vital importance in agile 

manufacturing processes. It was assumed here that valid historical data was limited – therefore 9 

batches were simulated and are shown in Fig. 3. The batch time is 28 minutes and the batch 

duration is divided into 7 stages of 4 minutes. Of these 9 batches, batches 1, 3, 6, 8 and 9 were 

selected for neural network model construction, while batches 2, 4, 5, and 7 were selected as 

“unseen” testing data for evaluating the model. Notice that the model evaluation batches were 

chosen to interleave the model construction batches. The model was therefore built from a wider 

range of data, and validated throughout this range. From the neural network model construction 

data, bootstrap re-sampling with replacement [24] was used to generate 30 replications of the data. 

In generating a replication of this data set, a sample is randomly taken from the data set. This 

sample is copied and put back to the original data set. This is repeated until a replication of the 

data set has been generated. A neural network is developed on each bootstrap replication data set. 

In this study, simple averaging is used to combine the individual networks.  
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In order to show the advantages of BAGNET, a single neural network model was also 

developed. All the individual network networks are feed forward neural networks with a single 

hidden layer. The models represented by the neural networks are of the following form: 

 

  y(t) = f[y(t-1), u(t-1)]      (12) 

where y is the degree of cure, u is the applied temperature, t is discrete time, f() is a nonlinear 

function represented by the neural network.  

The model can be used for calculating one-step-ahead predictions and multi-step-ahead (or long 

range) predictions as shown in Eq(13) and Eq(14) respectively. 

)]1(),1([)(ˆ  tutyfty       (13) 

)]1(),1(ˆ[)(ˆ  tutyfty       (14) 

In one-step-ahead prediction, the measured degree of cure at time t-1, y(t-1), is used to predict 

the degree of cure at time t, )(ˆ ty . In multi-step-ahead prediction, the predicted degree of cure at 

time t-1, )1(ˆ ty , is used to predict the degree of cure at time t, )(ˆ ty . For the optimisation 

control of polymer composite curing process, the control interest is on the final degree of cure at 

the end of a batch. Thus, multi-step-ahead or long range predictions are required. 

The networks were trained using the Levenberg-Marquardt optimisation algorithm with 

regularisation and cross-validation based “early-stopping”. The number of hidden neurons used is 

determined though cross validation. The data for building neural network models are further 

partitioned into training and validation sets. A number of neural networks were developed and 

tested on the validation data. The network that gives the lowest sum of squared errors (SSE) on the 

validation data is considered to have the appropriate number of hidden neurons. Fig. 4 shows that 

6 hidden neurons give the best performance. Thus all the individual networks use 6 hidden 

neurons. 

 

 
 

Fig. 4. SSE on the validation data 

 

In building bootstrap aggregated neural network, 30 individual neural networks were developed 

and then combined. Fig. 5 shows the long range prediction SSE from bootstrap aggregated neural 



11 

network with different number of networks combined. It can be clearly seen that the model 

prediction error reduces significantly when networks are combined. The least long-range 

prediction SSE on the validation subset is produced by a BAGNET with 25 networks, as shown in 

Fig. 5. However, SSEs for low number of neural networks are highly variable because the 

networks were trained just once, producing possible sub-optimal performance. As the number of 

neural networks increases, the variability averages out, and the SSE therefore decreases gradually. 

Therefore, for reliable and accurate predictions, large number of neural networks should be used. 

Beyond 20 networks, there is little change in SSE, while computational processing requirements 

are significantly increased. In this regard, a value at or just above 21 would be appropriate. A 

sensible value of 30 was chosen for the sake of reliable estimates of standard deviations of model 

predictions.  

 

 

Fig. 5. Long range prediction SSE for bootstrap aggregated neural networks with various numbers 

of constituent networks  

 

The mean squared errors (MSE) of long-range predictions are calculated and shown in Table 2. 

It can be seen from Table 1 that BAGNET gives much better performance than a single neural 

network. 

 

Table 1. Performance of BAGNET and single network  

Model MSE (training)  MSE (testing)  

BAGNET 0.56×10-3 1.1×10-3 

Single network 2.5×10-3 2.4×10-3 

 

5   Reliable Optimisation Control 

Using a neural network dynamic model, the optimal control profile (i.e. heating profile) is 

calculated off-line by solving the following optimisation problem. 
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)()]([min 321
,,1

feffd
tuu

tttJ
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 


      

s.t. product quality and operation constraints 

where d is the desired degree of cure, tf is the batch time, σe is the standard error of neural 

network predictions, β1, β2 and β3 are weighting factors, and u1,…, uN form the control profile. 

Earlier studies [25, 26] show that penalising wide model prediction confidence bounds (i.e. large 

σe) leads to reliable optimal control policies. 

 

The first term in the objective function intends to bring the final degree of cure to the desired 

value, which is typically 1, the maximum value. High value of degree of cure means that the 

product is highly solidified and the mould can be opened without affecting the product. The 

second term intends to reduce the batch time or curing time. Shorter batch time means that more 

parts can be produced for a given time, hence, improving the productivity. As the optimization is 

performed on a model and model plant mismatches are unavoidable, “optimal on model” may not 

be “optimal on plant”. The third term in the objective function penalizes wide model prediction 

confidence bound in order to improve the model prediction reliability under the optimisation 

control policy.  

 

The CACO was applied to this polymer moulding process by using the final developed 

BAGNET model in the objective function. In order to prove the CACO’s functionality, a 

consistency check, involving 30 runs, was performed. The performance of CACO is compared 

with that of SQP. For SQP implementations, random initial values were employed in each run. 

Note that in evaluating an optimiser’s achievement of desired accuracy, and hence success, the 

‘reference’ solution was taken to be the best of 100 runs on the gradient-based optimiser, with 

random initial values for each run. 

 

From Table 2, the CACO was 100% reliable in optimising. In contrast, the gradient-based 

optimiser had success rates less than 100%. Therefore the CACO was proven to be more reliable 

in optimising the neural network model. However, the CACO generally requires more function 

evaluations in finding the solution. This is due to the method of constraints handling and to the 

algorithm itself, which was found by others such as Socha and Dorigo [27] to be less efficient than 

later continuous ACO versions. Such faster algorithms, if as reliable as the CACO on the neural 

network model, will be more appealing for implementation on the real process. 

 

Table 2. Success rate of CACO and SQP  

β3 SQP CACO 

0 97 100 

0.1 90 100 

0.5 90 100 

1 70 100 
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The effect of incorporating model prediction confidence in the optimisation objective function is 

shown in Table 3. In Table 3, a is the actual degree of cure under the optimal control policy, ap is 

the neural network model predicted degree of cure under the optimal control policy, and σe is the 

standard error of model predictions. When the model prediction confidence is not considered, i.e. 

β3=0, the actual degree of cure is 9931.661×10
-4

. When the model prediction confidence is 

considered, the actual degree of cure is improved. Of the cases considered in Table 4, β3=0.5 gives 

the highest degree of cure on the actual process.  The optimal curing temperature profile for this 

case is: 

U=[20.0, 70.0, 120.0, 159.3, 159.3, 160.0, 160.0, 160.0] 

 

Table 3. CACO solutions using various weights β3 

β3 a 

/ ×10-4 

ap 

/ ×10-4 

σe 

/ ×10-3 

0 9931.661 9871.196 4.115 

0.1 9932.344 9871.195 4.114 

0.5 9933.642 9871.190 4.112 

1 9931.854 9871.091 4.099 

 

6   Conclusions 

Optimisation control of a reactive polymer composite moulding process using ant colony 

optimisation and bootstrap aggregated neural networks is studied. Bootstrap aggregated neural 

networks are shown to give better and more reliable prediction accuracy than single neural 

networks. Reliable models can be developed rapidly from process operation data by using 

bootstrap aggregated neural networks. Ant colony optimisation is shown to be able to find global 

optimum. Incorporating model prediction confidence bound in the optimisation can improve the 

reliability of the calculated optimal control policy. Application results on a simulated reactive 

polymer composite moulding process demonstrate that the proposed method is effective. The 

method is also applicable to the optimisation control of other batch processes. 
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