Skip to main content
Log in

Observer-based backstepping dynamic surface control for stochastic nonlinear strict-feedback systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An observer-based dynamic surface control approach is proposed for a class of stochastic nonlinear strict-feedback systems in order to solve the problem of ‘explosion of complexity’ in the backstepping design; that is, the dynamic surface control approach is extended to the stochastic setting. The circle criterion is applied to designing a nonlinear observer, and so no linear growth condition is imposed on nonlinear functions depending on system states. It is proved that the closed-loop system is semi-globally uniformly ultimately bounded in fourth moment, and the ultimate boundedness can be tuned arbitrarily small. Two examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krsti M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    Google Scholar 

  2. Chen W, Jiao LC, Wu J (2012) Decentralized backstepping output-feedback control for stochastic interconnected systems with time-varying delays using neural networks. Neural Comput Appl 21(6):1375–1390

    Article  Google Scholar 

  3. Chen WS (2009) Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theory Appl 3(10):1383–1394

    Article  MathSciNet  Google Scholar 

  4. Chen WS, Li JM (2008) Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern Part B Cybern 38(1):258–266

    Article  Google Scholar 

  5. Zhang Z, Chen W (2009) Adaptive output feedback control of nonlinear systems with actuator failures. Inf Sci 179(24):4249–4260

    Article  MATH  Google Scholar 

  6. Chen W, Jiao LC, Wu J (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  7. Chen WS, Li J (2010) Globally decentralized adaptive backstepping neural network tracking control for unknown nonlinear interconnected systems. Asian J Contro1 12(1):96–102

    Google Scholar 

  8. Liu YJ, Wang W, Tong SC, Liu YS (2010) Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans Syst Man Cybern Part A Syst Humans 40(1):170–184

    Article  Google Scholar 

  9. Chen W, Zhang Z (2010) Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign. Fuzzy Sets Syst 161(6):821–836

    Article  MATH  Google Scholar 

  10. Tong S, Li Y (2009) Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst 160(12):1749–1764

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen W, Li R (2010) Adaptive output-feedback control for MIMO nonlinear systems with time-varying delays using neural networks. J Syst Eng Electron 21(5):850–858

    Google Scholar 

  12. Chen WS, Li JM, Li J (2011) Practical iterative learning control framework based on robust adaptive approach. Asian J Control 13(1):85–93

    Article  MATH  MathSciNet  Google Scholar 

  13. Tong S, Li C, Li Y (2009) Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst 160(19):2755–2775

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen W, Zhang L (2010) Adaptive iterative learning control for nonlinearly parameterized systems with unknown time-varying delays. Int J Control Autom Syst 8(2):177–186

    Article  Google Scholar 

  15. Liu YJ, Wang W (2007) Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf Sci 177(18):3901–3917

    Article  MATH  Google Scholar 

  16. Chen W, Tian Y-P (2009) Neural network approximation for periodically disturbed functions and applications to control design. Neurocomputing 72(16–18):3891–3900

    Article  Google Scholar 

  17. Liu YJ, Chen CLP, Wen GX, Tong S (2011) Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans Neural Netw 22(7):1162–1167

    Article  Google Scholar 

  18. Chen W (2009) Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. ISA Trans 48(3):304–311

    Article  Google Scholar 

  19. Pan ZG, Basar T (1998) Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems. IEEE Trans Autom Control 43(8):1066–1083

    Article  MATH  MathSciNet  Google Scholar 

  20. Pan ZG, Basar T (1999) Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion. SIAM J Control Optim 37(3):957–995

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu Y, Zhang J, Pan Z (2003) Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index. Sci China (Series F) 46(2):126–144

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu Y, Pan Z, Shi S (2003) Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Trans Autom Control 48(3):509–514

    Article  MathSciNet  Google Scholar 

  23. Liu Y, Zhang J (2006) Practical output feedback risk-sensitive control for stochastic nonlinear systems under stable zero-dynamics. SIAM J Control Optim 45(3):885–926

    Article  MATH  MathSciNet  Google Scholar 

  24. Chen W, Jiao LC (2010) Finite-time stability theorem of stochastic nonlinear systems. Automatica 46(12):2105–2108

    Article  MATH  MathSciNet  Google Scholar 

  25. Arslan G, Basar T (2003) Decentralized risk-sensitive controller design for strict-feedback systems. Syst Control Lett 50(5):383–393

    Article  MATH  MathSciNet  Google Scholar 

  26. Li J, Chen W, Li J (2009) Adaptive NN output-feedback stabilization for a class of stochastic nonlinear strict-feedback systems. ISA Trans 48(4):468–475

    Article  Google Scholar 

  27. Chen W, Jiao L, Li J, Li R (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern Part B Cybern 40(3):939–950

    Article  Google Scholar 

  28. Deng H, Krsti M (1999) Output-feedback stochastic nonlinear stabilization. IEEE Trans Autom Control 44(2):328–333

    Article  MATH  Google Scholar 

  29. Chen WS, Jiao LC, Du ZB (2010) Output-feedback adaptive dynamic surface control of stochastic nonlinear systems using neural network. IET Control Theory Appl 4(12):3012–3021

    Article  MathSciNet  Google Scholar 

  30. Li J, Chen W, Li JM (2011) Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int J Robust Nonlinear Control 21(4):452–472

    Article  MATH  Google Scholar 

  31. Ji H, Xi H (2006) Adaptive output-feedback tracking of stochastic nonlinear systems. IEEE Trans Autom Control 51(2):355–360

    Article  MathSciNet  Google Scholar 

  32. Xie S, Xie L (2000) Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans Autom Control 45(1):132–137

    Article  MATH  Google Scholar 

  33. Liu SJ, Zhang JF, Jiang ZP (2007) Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2):238–251

    Article  MATH  MathSciNet  Google Scholar 

  34. Xie XJ, Tian J (2007) State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics. Int J Robust Nonlinear Control 17(14):1343–1362

    Article  MATH  MathSciNet  Google Scholar 

  35. Tian J, Xie XJ (2007) Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefficients. Int J Control 80(9):1503–1516

    Article  MATH  MathSciNet  Google Scholar 

  36. Chen W, Wu J, Jiao LC (2012) State-feedback stabilization for a class of stochastic time-delay nonlinear systems. Int J Robust Nonlinear Control 22(17):1921–1937

    Article  MATH  MathSciNet  Google Scholar 

  37. Liu SJ, Ge SS, Zhang JF (2008) Adaptive output-feedback control for a class of uncertain stochastic non-linear systems with time delays. Int J Control 81(8):1210–1220

    Article  MATH  MathSciNet  Google Scholar 

  38. Fu Y, Tian Z, Shi S (2003) State feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Trans Autom Control 48(2):282–286

    Article  MathSciNet  Google Scholar 

  39. Fu Y, Tian Z, Shi S (2005) Output feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Trans Autom Control 50(6):847–851

    Article  MathSciNet  Google Scholar 

  40. Hua C, Guang X (2004) Comments on State feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Trans Autom Control 49(7):1216–1216

    Article  Google Scholar 

  41. Liu SJ, Jiang ZP, Zhang JF (2008) Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. Automatica 44(8):1944-1957

    Article  MathSciNet  Google Scholar 

  42. Liu SJ, Zhang JF (2008) Output-feedback control of a class of stochastic nonlinear systems with linearly bounded unmeasurable states. Int J Robust Nonlinear Control 18(6):665–687

    Article  Google Scholar 

  43. Mu X, Liu H (2008) Stabilization for a class of stochastic nonlinear systems via output feedback. IEEE Trans Autom Control 53(1):360–367

    Article  MathSciNet  Google Scholar 

  44. Swaroop D, Hedrick JK, Yip PP, Gerdes JC (2000) Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Control 45(10):1893–1899

    Article  MATH  MathSciNet  Google Scholar 

  45. Song B, Hedrick JK (2004) Observer-based dynamic surface control for a class of nonlinear systems: An LMI approach. IEEE Trans Autom Control 49(11):1995–2001

    Article  MathSciNet  Google Scholar 

  46. Wang D, Huang J (2005) Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans Neural Netw 16(1):195–202

    Article  Google Scholar 

  47. Zhang TP, Ge SS (2008) Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7):1895-1903

    Article  MATH  MathSciNet  Google Scholar 

  48. Soog B (2007) Robust stabilization of decentralized dynamic surface control for a class of interconnected nonlinear systems. Int J Control Autom Syst 5(2):138–146

    Google Scholar 

  49. Yang AJ, Nagai T, Kanae S, Wada K (2007) Dynamic surface control approach to adaptive robust control of nonlinear systems in semi-strict feedback form. Int J Syst Sci 38(9):709–724

    Article  MATH  MathSciNet  Google Scholar 

  50. Chen W, Jiao L (2010) Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks. IEEE Trans Neural Netw 21(2):345–351

    Article  Google Scholar 

  51. Chen W, Jiao L, Li R, Li J (2010) Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans Fuzzy Syst 18(4):674–685

    Article  Google Scholar 

  52. Yoo SJ, Park JB (2009) Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans Syst Man Cybern Part B Cybern 39(5):1316–1323

    Article  Google Scholar 

  53. Chen W, Li W, Miao Q (2010) Backstepping control for periodically time-varying systems using high-order neural network and Fourier series expansion. ISA Trans 49(3):283–292

    Article  Google Scholar 

  54. Yoo SJ, Park JB, Choi YH (2006) Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. IEEE Trans Syst Man Cybern Part B Cybern 36(6):1342–1355

    Article  MathSciNet  Google Scholar 

  55. Shieh HJ, Hsu CH (2007) An integrator-backstepping-based dynamic surface control method for a two-axis piezoelectric micropositioning stage. IEEE Trans Control Syst Technol 15(5):916–926

    Article  Google Scholar 

  56. Arack M, Kokotovic P (2001) Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12):1923-1930

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their comments that improve the quality of the paper. This work was supported by the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayun Liu.

Appendices

Appendix 1: The proof of Theorem 1

Proof: Define μ = x − v and \(\Uplambda(x,\mu)=J(x)-J(x-\mu)\). From this together with \(\Upphi(x)=HJ(x)\) by Assumption 2, it follows that

$$ \Upphi(x)-\Upphi(v)=H(J(x)-J(x-\mu))=H\Uplambda(x,\mu) $$
(44)
$$ \mu^{\rm T}=x^{\rm T}-(\hat{x}-KC\tilde{x})^{\rm T}=\tilde{x}^{\rm T}(I+KC)^{\rm T} $$
(45)

and then, by the Mean Value Theorem, we have \( \Uplambda(x,\mu)=\int_0^1\frac{\partial J}{\partial s}|_{s=x-\tau\mu}\mu d\tau \) which, together with Assumption 2, implies that

$$ \mu^{\rm T}\Uplambda(x,\mu)=\frac{1}{2}\mu^{\rm T}\left(\int\limits_0^1\left[\frac{\partial J}{\partial s}+\left(\frac{\partial J}{\partial s}\right)^{\rm T}\right]_{s=x-\tau\mu}{\rm d}\tau\right)\mu\geq0 $$
(46)

and then, recalling (12) and (44), we have

$$ \tilde{x}^{\rm T}P(\Upphi(x)-\Upphi(v))=\tilde{x}^{\rm T}PH\Uplambda(x,\mu)=-\mu^{\rm T}\Uplambda(x,\mu)\leq0. $$
(47)

Along the trajectory of (14), one has

$$ \begin{aligned} {{\mathcal{L}}}V_0&=(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}[(A+LC)^{\rm T}P+P(A+LC)]\tilde{x}+2(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}P(\Upphi(x)-\Upphi(v))\\ &+2(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}P F+2{\rm Tr}\{G^{\rm T}(2P\tilde{x}\tilde{x}^{\rm T}P+\tilde{x}^{\rm T}P\tilde{x}P)G\}. \end{aligned} $$
(48)

where for convenience, F(y) and G(y) are denoted by F and G, respectively. Substituting (11) and (47) into (48) yields

$$ {{\mathcal{L}}}V_0\leq-(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}Q\tilde{x}+2(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}P F+2{\rm Tr}\{G^{\rm T}(2P\tilde{x}\tilde{x}^{\rm T}P+\tilde{x}^{\rm T}P\tilde{x}P)G\}. $$
(49)

Using Young’s inequality (see 4), together with (6) and (7), we have

$$ 2(\tilde{x}^{\rm T}P\tilde{x})\tilde{x}^{\rm T}P F\leq 2|P|^2|\tilde{x}|^3|F|\leq\frac{3}{2}\epsilon_1^{4/3}|P|^{8/3}|\tilde{x}|^4+\frac{1}{2\epsilon_1^4}y^4|\bar{F}(y)|^4 $$
(50)
$$ 2{\rm Tr}\{G^{\rm T}(2P\tilde{x}\tilde{x}^{\rm T}P+\tilde{x}^{\rm T}P\tilde{x}P)G\}\leq\frac{3n\sqrt{n}}{\epsilon_2^2}y^4|\bar{G}(y)|^4+3n\sqrt{n}\epsilon_2^2|P|^4|\tilde{x}|^4 $$
(51)

where \(\epsilon_1\) and \(\epsilon_2\) are the positive design constants. The detailed derivation of the inequality (51) is similar to [28, Eq. (A.7)]. Substituting (50) and (51) back into (49) yields (16).

Appendix 2: The proof of Theorem 2

Consider the following Lyapunov function

$$ V=\frac{1}{2}(\tilde{x}^{\rm T}P\tilde{x})^2+\frac{1}{4}\sum_{i=1}^nz_i^4+\frac{1}{4}\sum_{i=1}^{n-1}\varrho_{i+1}^4 $$
(52)

and then along the trajectory of (35), noting Theorem 1, we have

$$ \begin{aligned} {{\mathcal{L}}}V\leq&\left(-\lambda_{\rm min}(P)\lambda_{\rm min}(Q)+\frac{3}{2}\epsilon_1^{4/3}|P|^{8/3} +3n\sqrt{n}\epsilon_2^2|P|^4\right)|\tilde{x}|^4\\ &\quad+y^4\left(\frac{1}{2\epsilon_1^4}|\bar{F}(y)|^4 +\frac{3n\sqrt{n}}{\epsilon_2^2}|\bar{G}(y)|^4\right)-y^4\Upxi(y)+\frac{3}{2}y^2g_1^{\rm T}(y)g_1(y)\\ &\quad+a_{1,2}y^3\tilde{x}_2-\sum_{i=1}^{n}c_iz_i^4+\sum_{i=1}^{n-1}a_{i,i+1}z_i^3z_{i+1}+\sum_{i=1}^{n-1}a_{i,i+1}z_{i}^3\varrho_{i+1}\\ &\quad-\sum_{i=1}^{n-1}\frac{1}{\iota_{i+1}}\varrho_{i+1}^4+\sum_{i=1}^{n-1}\varrho_{i+1}^3B_{i+1}+\frac{3}{2}\sum_{i=1}^{n-1}\varrho_{i+1}^2{\rm Tr}\{C_{i+1}^{\rm T}C_{i+1}\}. \end{aligned} $$
(53)

Since for any M 0 > 0, the sets \(\Uppi_i:=\{\frac{1}{2}(\tilde{x}^{\rm T}P\tilde{x})^2+\frac{1}{4}\sum_{j=1}^iz_j^4+\frac{1}{4}\sum_{j=1}^{i-1}\varrho_{j+1}^4 \leq M_0 \}, i=1,\ldots, n\) are compact. Therefore, B i+1 and Tr{C T i+1 C i+1} have their maximum on \(\Uppi_i\), denoted by M i+1 and N i+1, respectively.

Using Young’s inequality (see Lemma 2), we have

$$ a_{1,2}y^3\tilde{x}_2\leq \frac{3}{4}(\epsilon_3a_{1,2})^{4/3}y^4+\frac{1}{4\epsilon_3^4}|\tilde{x}|^4 $$
(54)
$$ \sum_{i=1}^{n-1}a_{i,j}z_i^3z_{i+1}\leq \frac{3}{4}\sum_{i=1}^{n-1}(\delta_ia_{i,j})^{4/3}z_i^4+\frac{1}{4}\sum_{i=2}^n\frac{1}{\delta_{i-1}^4}z_i^4 $$
(55)
$$ \begin{aligned} &\sum_{i=1}^{n-1}a_{i,j}z_{i}^3\varrho_{i+1}\leq\frac{3}{4}\sum_{i=1}^{n-1}(\varsigma_ia_{i,j})^{4/3}z_i^4 +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\varsigma_{i}^4}\varrho_{i+1}^4\\ &\sum_{i=1}^{n-1}\varrho_{i+1}^3B_{i+1}\leq\frac{3}{4}\sum_{i=1}^{n-1}(\nu_iM_{i+1})^{4/3}\varrho_{i+1}^4 +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\nu_{i}^4} \end{aligned} $$
(56)
$$ \frac{3}{2}\sum_{i=1}^{n-1}\varrho_{i+1}^2{\rm Tr}\{C_{i+1}^{\rm T}C_{i+1}\}\leq\frac{3}{4}\sum_{i=1}^{n-1}(\xi_iN_{i+1})^{4/3}\varrho_{i+1}^4 +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\xi_{i}^4}. $$
(57)

Substituting (5457) and (21) into (53), we have

$$ \begin{aligned} {{\mathcal{L}}}V&\leq-\left(\lambda_{\rm min}(P)\lambda_{\rm min}(Q)-\frac{3}{2}\epsilon_1^{4/3}|P|^{8/3} -3n\sqrt{n}\epsilon_2^2|P|^4-\frac{1}{4\epsilon_3^4}\right) |\tilde{x}|^4\\ &\quad-\left(c_1-\frac{3}{4}(a_{1,2}\epsilon_3)^{4/3}-\frac{3}{4}(a_{1,2}\delta_1)^{4/3}-\frac{3}{4}(a_{1,2}\varsigma_1)^{4/3}\right)y^4\\ &\quad-\sum_{i=2}^{n-1}\left(c_i-\frac{3}{4}(a_{i,i+1}\delta_i)^{4/3}-\frac{1}{4\delta_{i-1}^{4}}-\frac{3}{4}(a_{i,i+1}\varsigma_i)^{4/3}\right)z_i^4 -\left(c_n-\frac{1}{4\delta_{n-1}^{4}}\right)z_n^4\\ &\quad-\sum_{i=1}^{n-1}\left(\frac{1}{\iota_{i+1}}-\frac{3}{4}\varsigma_i^{4/3} -\frac{3}{4}(\nu_iM_{i+1})^{4/3}-\frac{3}{4}(\xi_iN_{i+1})^{4/3}\right)\varrho_{i+1}^4\\ &\quad+\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\nu_{i}^4} +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\xi_{i}^4}. \end{aligned} $$
(58)

Choose the design parameter \(\epsilon_1, \epsilon_2,\epsilon_3, c_i, \delta_i, \varsigma_i, \nu_i, \xi_i\) such that

$$ \lambda_{\rm min}(P)\lambda_{\rm min}(Q)-\frac{3}{2}\epsilon_1^{4/3}|P|^{8/3} -3n\sqrt{n}\epsilon_2^2|P|^4-\frac{1}{4\epsilon_3^4}=\lambda^0>0 $$
(59)
$$ c_1-\frac{3}{4}(a_{1,2}\epsilon_3)^{4/3}-\frac{3}{4}(a_{1,2}\delta_1)^{4/3}-\frac{3}{4}(a_{1,2}\varsigma_1)^{4/3}=c_1^0>0 $$
(60)
$$ c_i-\frac{3}{4}(a_{i,i+1}\delta_i)^{4/3}-\frac{1}{4\delta_{i-1}^{4}}-\frac{3}{4}(a_{i,i+1}\varsigma_i)^{4/3}=c_i^0>0, \,i=2,\ldots,n-1 $$
(61)
$$ c_n-\frac{1}{4\delta_{n-1}^{4}}=c_n^0>0 $$
(62)
$$ \frac{1}{\iota_{i+1}}-\frac{3}{4}\varsigma_i^{4/3} -\frac{3}{4}(\nu_iM_{i+1})^{4/3}-\frac{3}{4}(\xi_iN_{i+1})^{4/3}=\iota_{i+1}^0>0, \,i=1,\ldots,n-1. $$
(63)

Substituting (5963) into (58) yields

$$ \begin{aligned} {{\mathcal{L}}}V\leq&-\lambda^0|\tilde{x}|^4-\sum_{i=1}^{n}c_i^0z_i^4-\sum_{i=1}^{n-1}\iota_{i+1}^0\varrho_{i+1}^4+\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\nu_{i}^4} +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\xi_{i}^4}\\ \leq&-\ell V+\hbar \end{aligned} $$
(64)

where

$$ \begin{aligned} \ell=&\hbox{min}\left\{2/\lambda_{\max}^2(P), 4c_1^0,\ldots,4c_n^0, 4\iota_{2}^0,\ldots, 4\iota_n^0 \right\},\\ \hbar=&\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\nu_{i}^4} +\frac{1}{4}\sum_{i=1}^{n-1}\frac{1}{\xi_{i}^4}. \end{aligned} $$

Based on (64), we easily obtain

$$ \frac{{\rm d}(EV)}{{\rm d}t}=E({{\mathcal{L}}}V)\leq-\ell E V+\hbar. $$
(65)

Let \(\ell>\hbar/M\), then d(EV)/dt ≤ 0 on EV = M. Thus, V ≤ M is an invariant set, that is, if EV(0) ≤ M, then EV(t) ≤ M for all t > 0. Thus, (65) holds for all V(0) < M and all t > 0.

Based on Lemma 1, inequality (64) further implies that

$$ 0\leq EV(t)\leq V(0)e^{-\ell t}+\frac{\hbar}{\ell}, \forall t\geq0. $$
(66)

The above inequality means that EV(t) is eventually bounded by \(\frac{\hbar}{\ell}\). Thus, recalling (52), all error signals of the closed-loop system, that is, \(\tilde{x}, z_i, \varrho_{i+1}\) are SGUUB in the sense of fourth moment. Moreover, by adjusting the design parameters, we can increase the value of ℓ and reducing the value of \(\hbar\). In other words, the boundedness of closed-loop error signals above can be made arbitrarily small. This completes the whole proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J. Observer-based backstepping dynamic surface control for stochastic nonlinear strict-feedback systems. Neural Comput & Applic 24, 1067–1077 (2014). https://doi.org/10.1007/s00521-012-1325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1325-3

Keywords

Navigation