Skip to main content
Log in

Output recurrent wavelet neural network-based adaptive backstepping controller for a class of MIMO nonlinear non-affine uncertain systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an adaptive backstepping control problem is proposed for a class of multiple-input-multiple-output nonlinear non-affine uncertain systems. An output recurrent wavelet neural network (ORWNN) is used to approximate the unknown nonlinear functions to develop the proposed adaptive backstepping controller. The proposed ORWNN combines the advantages of wavelet-based neural network, fuzzy neural network, and output feedback layer to achieve higher approximation accuracy and faster convergence. According to the estimation of ORWNN, the control scheme is designed by backstepping approach such that the system outputs follow the desired trajectories. Based on the Lyapunov approach, our approach guarantees that the system outputs converge to a small neighborhood of the references signals, that is, all signals of the closed-loop system are semi-globally uniformly ultimately bounded. Finally, simulation results including double pendulums system and two inverted pendulums on carts system are shown to demonstrate the performance and effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ge SS, Wang C (2004) Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Netw 15(3):674–692

    Article  Google Scholar 

  2. Chen B, Liu X, Tong S (2007) Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans Fuzzy Syst 15(2):287–300

    Article  Google Scholar 

  3. Alanis AY, Sanchez EN, Loukianov AG (2007) Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Trans Neural Netw 18(4):1185–1195

    Article  Google Scholar 

  4. Lin CM, Lin MH, Yeh RG (2012) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl. doi:10.1007/s00521-012-1021-3

    Google Scholar 

  5. Lin CM, Chen LY, Chen CH (2007) RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology. IEEE Trans Neural Netw 18(3):708–720

    Article  Google Scholar 

  6. Lin CM, Chen CH (2007) Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller. IEEE Trans Syst Man Cybern Part B 37(1):110–123

    Article  Google Scholar 

  7. Khalil HK (2000) Nonlinear systems, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  8. Zhou S, Feng G, Feng CB (2005) Robust control for a class of uncertain nonlinear systems: adaptive fuzzy approach based on backstepping. Fuzzy Sets Syst 151:1–20

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen CH (2012) Wavelet-based adaptive robust control for a class of MIMO uncertain nonlinear systems. Neural Comput Appl 21(5):747–762

    Article  Google Scholar 

  10. Xu Z, Song Q, Wang D (2012) Recurrent neural tracking control based on multivariable robust adaptive gradient-descent training algorithm. Neural Comput Appl 21(7):1745–1755

    Article  MathSciNet  Google Scholar 

  11. Lee CH, Lai WY (2012) Nonlinear control of benchmark problems using TSK-type fuzzy neural system. Neural Comput Appl. doi:10.1007/s00521-012-1250-5

    Google Scholar 

  12. Li Y, Qiang S, Zhuang X, Kaynak O (2004) Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 15(3):693–701

    Article  Google Scholar 

  13. Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1–9

    Article  Google Scholar 

  14. Lee CH, Chang SK (2012) Experimental implementation of nonlinear TORA system and adaptive backstepping controller design. Neural Comput Appl 21(4):785–800

    Article  Google Scholar 

  15. Lee CH, Chung BR (2012) Adaptive backstepping controller design for nonlinear uncertain systems using fuzzy neural systems. Int J Syst Sci 43(10):1855–1869

    Article  MathSciNet  Google Scholar 

  16. Lee CH, Wang BH (2009) Adaptive supervisory WCMAC neural network controller (SWC) for nonlinear systems. Soft Comput 13(1):1–12

    Article  Google Scholar 

  17. Wen GX, Liu YJ, Philip Chen CL (2012) Direct adaptive robust NN control for a class of discrete-time nonlinear strict-feedback SISO systems. Neural Comput Appl 21(6):1423–1431

    Article  Google Scholar 

  18. Chen W, Jiao LC, Wu J (2012) Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators. Neural Comput Appl 21(2):351–363

    Article  Google Scholar 

  19. Park JK, Huh SH, Kim SH (2005) Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Trans Neural Netw 16(2):414–422

    Article  Google Scholar 

  20. Sousa CD, Hemerly JEM, Calvao RH (2002) Adaptive control for mobile robot using wavelet networks. IEEE Trans Syst Man Cybern 32(4):493–504

    Article  Google Scholar 

  21. Wai RJ, Duan RY, Lee JD, Chang HH (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748

    Article  Google Scholar 

  22. Senapati MR, Mohanty AK, Dash S, Dash PK (2012) Local linear wavelet neural network for breast cancer recognition. Neural Comput Appl. doi:10.1007/s00521-011-0670-y

    MATH  Google Scholar 

  23. Lin CT, Lee CSG (1996) Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice-Hall, NJ

    Google Scholar 

  24. Lee CH, Teng CC (2000) Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 8(4):349–366

    Google Scholar 

  25. Lin CM, Mon YJ (2005) Decoupling control by hierarchical fuzzy sliding-mode controller. IEEE Trans Fuzzy Syst 13(4):593–598

    Google Scholar 

  26. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  27. Calise J, Hovakimyan N, Idan M (2001) Adaptive output feedback control of nonlinear systems using neural networks. Automatica 37(1):1201–1211

    Article  MATH  MathSciNet  Google Scholar 

  28. Hovakimyan N, Nardi F, Calise A, Kim N (2002) Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks. IEEE Trans Neural Netw 13(6):1420–1431

    Article  Google Scholar 

  29. Young A, Cao C, Hovakimyan N, Lavretsky E (2006) Control of a nonaffine double-pendulum system via dynamic inversion and time-scale separation. In: IEEE Proceedings of the American Control Conference, pp 1820–1825

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their insightful comments and valuable suggestions. This work was support partially by National Science Council, Taiwan, ROC under NSC-100-2221 E-005-093-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hung Lee.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Before proving Theorem 1, the following Lemma 1 should be introduced.

Lemma 1 [8]

Let \( V:[0,\infty ) \to \Re \) satisfy the inequality

$$ V(t) \le - 2\beta V + M,\forall t \ge 0 $$
(41)

where \( \beta \) and M are positive constants. Then,

$$ V(t) \le V(t_{0} )\exp [ - 2\beta (t - t_{0} )] + \frac{M}{2\beta },\forall t \ge t_{0} . $$
(42)

Proof of Theorem 1

Design the Lyapunov candidate function

$$ V_{2} (t) = V_{1} (t) + \frac{1}{2}{\mathbf{e}}_{2}^{T} (t){\mathbf{e}}_{2} (t) + \frac{1}{{2r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{{\mathbf{T}}} {\tilde{\mathbf{w}}}) + \frac{1}{{2r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}}) \, + \frac{1}{{2r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}}) + \frac{1}{{2r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} ) $$
(43)

where tr(.) denotes the trace of matrix. Differentiating (43), then, we have

$$ \begin{aligned} \dot{V}_{2} (t) & = \dot{V}_{1} (t) + {\mathbf{e}}_{2}^{T} (t){\dot{\mathbf{e}}}_{2} (t) - \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} \dot{\hat{{{\mathbf w}}}}) - \frac{1}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} \dot{\hat{{{\mathbf m}}}}) - \frac{1}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} \dot{\hat{{{\mathbf \sigma}}}}) - \frac{1}{{r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} \dot{\hat{{{\mathbf \theta}}}}_{{\mathbf{r}}} ) \\ & = - k_{1} {\mathbf{e}}_{1}^{T} (t){\mathbf{e}}_{1} (t) + {\mathbf{e}}_{1}^{T} (t){\mathbf{e}}_{2} (t) \, + {\mathbf{e}}_{2}^{T} (t)({\mathbf{H}} + ( - {\hat{\mathbf{H}}} - {\mathbf{e}}_{1} - k_{2} {\mathbf{e}}_{2} + {\dot{\mathbf{\alpha }}}) - {\dot{\mathbf{\alpha }}}) \\ & \quad - \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} \dot{\hat{{{\mathbf w}}}}) - \frac{1}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} \dot{\hat{{{\mathbf m}}}}) - \frac{1}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} \dot{\hat{{{\mathbf \sigma}}}}) - \frac{1}{{r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\hat{{{\mathbf \theta}}}}_{{\mathbf{r}}} ). \\ \end{aligned} $$
(44)

Substituting (15) into (44), we obtain

$$ \begin{aligned} \dot{V}_{2} (t) & = - k_{1} {\mathbf{e}}_{1}^{T} (t){\mathbf{e}}_{1} (t) - k_{2} {\mathbf{e}}_{2}^{T} (t){\mathbf{e}}_{2} (t) + {\mathbf{e}}_{2}^{T} (t)[{\tilde{\mathbf{w}}}^{T} ({\hat{\mathbf{\Uppsi }}} - {\varvec{\Uppsi}}_{m}^{T} {\hat{\mathbf{m}}} - {\varvec{\Uppsi}}_{\sigma }^{T} {\hat{\mathbf{\sigma }}} - {\varvec{\Uppsi}}_{\theta }^{T} {\hat{\mathbf{\theta }}}_{{\mathbf{r}}} ) \\ & \quad + \hat{w}^{T} ({\varvec{\Uppsi}}_{m} {\tilde{\mathbf{m}}} + {\varvec{\Uppsi}}_{\sigma } {\tilde{\mathbf{\sigma }}} + {\varvec{\Uppsi}}_{{\theta_{r} }} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} ) + {\varvec{\Updelta}}] \\ & \quad - \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\dot{{\hat{\mathbf w}}}}) - \frac{1}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} \dot{\hat{{{\mathbf m}}}}) - \frac{1}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} \dot{\hat{{{\mathbf \sigma}}}}) \, - \frac{1}{{r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} \dot{\hat{{{\mathbf \theta}}}}_{{\mathbf{r}}} ). \\ \end{aligned} $$
(45)

Substitute parameter update laws (30)–(33) into (45), \( \dot{V}_{2} \) is

$$ \begin{aligned} \dot{V}_{2} (t) & = - \sum\limits_{i = 1}^{2} {k_{i} {\mathbf{e}}_{i}^{T} (t)} {\mathbf{e}}_{i} (t) + \sum\limits_{i = 1}^{2} {{\mathbf{e}}_{i}^{T} (t)({\varvec{\Updelta}}_{i} (t))} + \frac{2}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\hat{\mathbf{w}}}) + \frac{2}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\hat{\mathbf{m}}}) + \frac{2}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\hat{\mathbf{\sigma }}}) \\ & \quad + \frac{2}{{r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\hat{\mathbf{\theta }}}_{{\mathbf{r}}} ) + \frac{2}{{r_{2} }}{\text{tr}}[{\tilde{\mathbf{m}}}^{T} ({\mathbf{m}}^{ * } - {\tilde{\mathbf{m}}})] + \frac{2}{{r_{3} }}{\text{tr}}[{\tilde{\mathbf{\sigma }}}^{T} ({\varvec{\sigma}}^{ * } - {\tilde{\mathbf{\sigma }}})] \, + \frac{2}{{r_{4} }}{\text{tr}}[{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} ({\varvec{\theta}}_{{\mathbf{r}}}^{*} - {\hat{\mathbf{\theta }}}_{{\mathbf{r}}} )] \\ \end{aligned} $$
(46)

where \( {\varvec{\Updelta}}_{1} = 0, \, {\varvec{\Updelta}}_{2} = {\varvec{\Updelta}} \). The following inequality is used to prove the stability of system (1) [8]

$$ ab \le ka^{2} + \frac{{b^{2} }}{4k} ,\quad \forall k > 0. $$
(47)

Then, we can choose the following inequalities

$$ 2{\tilde{\mathbf{w}}}^{T} {\mathbf{w}}^{*} \le {\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}} + {\mathbf{w}}^{*T} {\mathbf{w}}^{*} , $$
(48)
$$ 2{\tilde{\mathbf{m}}}^{T} {\mathbf{m}}^{*} \le {\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}} + {\mathbf{m}}^{*T} {\mathbf{m}}^{*} , $$
(49)
$$ 2{\tilde{\mathbf{\sigma }}}^{T} {\varvec{\sigma}}^{*} \le {\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}} + {\varvec{\sigma}}^{*T} {\varvec{\sigma}}^{*} , $$
(50)
$$ 2{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{*} \le {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{{}} + {\varvec{\theta}}_{{\mathbf{r}}}^{*T} {\varvec{\theta}}_{{\mathbf{r}}}^{*} . $$
(51)

Subsequently, (39) can be rewritten as

$$ \begin{aligned} \dot{V}_{2} & \le - \sum\limits_{i = 1}^{2} {k_{i} {\mathbf{e}}_{i}^{T} } {\mathbf{e}}_{i} + \sum\limits_{i = 1}^{2} {{\mathbf{e}}_{i}^{T} ({\varvec{\Updelta}}_{i} )} + \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}}) + \frac{1}{{r_{1} }}{\text{tr}}({\mathbf{w}}^{ * T} {\mathbf{w}}^{ * } ) - \frac{2}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}}) + \frac{1}{{r_{2} }}{\text{tr}}(\tilde{m}^{T} \tilde{m}) \\ & \quad + \frac{1}{{r_{2} }}{\text{tr}}(m^{ * T} m^{ * } ) - \frac{2}{{r_{2} }}{\text{tr}}(\tilde{m}^{T} m) + \frac{1}{{r_{3} }}{\text{tr}}(\tilde{\sigma }^{T} \tilde{\sigma }) + \frac{1}{{r_{3} }}{\text{tr}}({\varvec{\sigma}}^{ * T} {\varvec{\sigma}}^{ * } ) \, - \frac{2}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}}) \\ & \quad + \frac{1}{{r_{4} }}{\text{tr}}\left( {{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} } \right) \, + \frac{1}{{r_{4} }}{\text{tr}}\left( {{\varvec{\theta}}_{{\mathbf{r}}}^{*T} {\varvec{\theta}}_{{\mathbf{r}}}^{ * } } \right) - \frac{2}{{r_{4} }}{\text{tr}}\left( {{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} } \right) \\ & \le - \sum\limits_{i = 1}^{2} {k_{i} {\mathbf{e}}_{i}^{T} } {\mathbf{e}}_{i} + \sum\limits_{i = 1}^{2} {{\mathbf{e}}_{i}^{T} ({\varvec{\Updelta}}_{i} )} + \frac{{\Updelta_{i}^{T} {\varvec{\Updelta}}_{i} }}{{2k_{i} }} - \frac{{\Updelta_{i}^{T} {\varvec{\Updelta}}_{i} }}{{2k_{i} }} + \left( {\sum\limits_{i = 1}^{2} {k_{i} \frac{{{\mathbf{e}}_{i}^{T} {\mathbf{e}}_{i} }}{2}} - \sum\limits_{i = 1}^{2} {k_{i} \frac{{{\mathbf{e}}_{i}^{T} {\mathbf{e}}_{i} }}{{\mathbf{2}}}} } \right) \\ & \quad - \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{{\mathbf{T}}} {\tilde{\mathbf{w}}}) + \frac{1}{{r_{1} }}{\text{tr}}({\mathbf{w}}^{ * T} {\mathbf{w}}^{ * } ) - \frac{1}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}}) + \frac{1}{{r_{2} }}{\text{tr}}\left( {{\mathbf{m}}^{ * T} {\mathbf{m}}^{ * } } \right) - \frac{1}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{{\mathbf{T}}} {\tilde{\mathbf{\sigma }}}) \\ & \quad + \frac{1}{{r_{3} }}{\text{tr}}\left( {{\varvec{\sigma}}^{ * T} {\varvec{\sigma}}^{ * } } \right) - \frac{1}{{r_{4} }}{\text{tr}}\left( {{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} } \right) + \frac{1}{{r_{4} }}{\text{tr}}\left( {{\varvec{\theta}}_{{\mathbf{r}}}^{*T} {\varvec{\theta}}_{{\mathbf{r}}}^{*} } \right) \, \\ & \le - \frac{1}{2}\sum\limits_{i = 1}^{2} {k_{i} {\mathbf{e}}_{i}^{T} {\mathbf{e}}_{i} + \sum\limits_{i = 1}^{2} {\frac{{{\varvec{\Updelta}}_{i}^{T} {\varvec{\Updelta}}_{i} }}{{2k_{i} }}} } \, - \sum\limits_{i = 1}^{2} {\left[ {\left( {\sqrt {\frac{{k_{i} }}{2}} {\mathbf{e}}_{i} - \sqrt {\frac{1}{{2k_{i} }}} {\varvec{\Updelta}}_{i} } \right)^{T} \left( {\sqrt {\frac{{k_{i} }}{2}} {\mathbf{e}}_{i} (t) - \sqrt {\frac{1}{{2k_{i} }}} {\varvec{\Updelta}}_{i} (t)} \right)} \right]} \\ & \quad - \frac{1}{{2r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}}) \, + \frac{1}{{r_{1} }}{\text{tr}}\left( {{\mathbf{w}}^{ * T} {\mathbf{w}}^{ * } } \right) - \frac{1}{{2r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}}) + \frac{1}{{r_{2} }}{\text{tr}}({\mathbf{m}}^{ * T} {\mathbf{m}}^{ * } ) - \frac{1}{{2r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}}) \, \\ & \quad + \frac{1}{{r_{3} }}{\text{tr}}\left( {{\varvec{\sigma}}^{ * T} {\varvec{\sigma}}^{ * } } \right) - \frac{1}{{2r_{4} }}{\text{tr}}\left( {{\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} } \right) \, + \frac{1}{{r_{4} }}{\text{tr}}\left( {{\varvec{\theta}}_{{\mathbf{r}}}^{*T} {\varvec{\theta}}_{{\mathbf{r}}}^{T} } \right) \\ & \le - \frac{1}{2}\sum\limits_{i = 1}^{2} {{\mathbf{e}}_{i}^{T} {\mathbf{e}}} - \frac{1}{{2r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}}) - \frac{1}{{2r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}}) - \frac{1}{{2r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}}) - \frac{1}{{2r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} ) + G \\ & \quad \le - CV_{2} + G \, \\ \end{aligned} $$
(52)

where C = 0.5, \( V_{2} = \sum\nolimits_{i = 1}^{2} {{\mathbf{e}}_{i}^{T} {\mathbf{e}}_{i} } + \frac{1}{{r_{1} }}{\text{tr}}({\tilde{\mathbf{w}}}^{T} {\tilde{\mathbf{w}}}) + \frac{1}{{r_{2} }}{\text{tr}}({\tilde{\mathbf{m}}}^{T} {\tilde{\mathbf{m}}}) + \frac{1}{{r_{3} }}{\text{tr}}({\tilde{\mathbf{\sigma }}}^{T} {\tilde{\mathbf{\sigma }}}) + \frac{1}{{r_{4} }}{\text{tr}}({\tilde{\mathbf{\theta }}}_{{\mathbf{r}}}^{T} {\tilde{\mathbf{\theta }}}_{{\mathbf{r}}} ) \), \( \, G = \frac{{\Updelta_{i}^{T} \Updelta_{i} }}{{2k_{i} }} + \frac{1}{{r_{1} }}{\text{tr}}({\mathbf{w}}^{ * T} {\mathbf{w}}^{*} ) + \frac{1}{{r_{2} }}{\text{tr}}({\mathbf{m}}^{ * T} {\mathbf{m}}^{*} ) + \frac{1}{{r_{3} }}{\text{tr}}({\varvec{\sigma}}^{ * T} {\varvec{\sigma}}^{*} ) + \frac{1}{{r_{4} }}{\text{tr}}({\varvec{\theta}}_{{\mathbf{r}}}^{*T} {\varvec{\theta}}_{{\mathbf{r}}}^{*} ) \). Hence, we have

$$ V_{2} (t) \le - CV_{2} (t) + G,\quad \forall t \ge 0. $$
(53)

By the literature of [8], we have

$$ e^{2Ct} \dot{V}_{2} (t) + 2Ce^{2Ct} V_{2} (t) \le e^{2Ct} G, $$
(54)

therefore,

$$ \frac{d}{dt}[e^{2Ct} \dot{V}_{2} (t)] \le e^{2Ct} G. $$
(55)

Integrating this inequality form \( t_{0} \) to t yields

$$ e^{2Ct} \dot{V}_{2} (t) - e^{{2Ct_{0} }} \dot{V}_{2} (t_{0} ) \le \frac{G}{2C}(e^{2Ct} - e^{{2Ct_{0} }} ) \le \frac{G}{2C}e^{2Ct} . $$
(56)

Hence,

$$ V_{2} (t) \le V_{2} (t_{0} )\exp [ - 2C(t - t_{0} )] + \frac{G}{2C}. $$
(57)

It can imply that all the signals of the closed-loop system \( {\mathbf{e}}_{1} (t), \, {\mathbf{e}}_{2} ( {\text{t), }}{\tilde{\mathbf{w}}}, \, {\tilde{\mathbf{m}}}, \, {\tilde{\mathbf{\sigma }}}, \, {\varvec{\theta}}_{{\mathbf{r}}} , { } \) converge to a bounded boundary as t → ∞. Consider system (1) and the adaptive laws (30)–(33), all the signals of the resulting closed-loop system are globally uniformly ultimately bounded (UUB) according to Lemma 1. Therefore, the stability proof is completely. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Chang, HH. Output recurrent wavelet neural network-based adaptive backstepping controller for a class of MIMO nonlinear non-affine uncertain systems. Neural Comput & Applic 24, 1035–1045 (2014). https://doi.org/10.1007/s00521-012-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1326-2

Keywords

Navigation