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Abstract The Naive Bayes classifier is a popular classification technique for
data mining and machine learning. It has been shown to be very effective on
a variety of data classification problems. However, the strong assumption that
all attributes are conditionally independent given the class is often violated
in real world applications. Numerous methods have been proposed in order
to improve the performance of the Naive Bayes classifier by alleviating the
attribute independence assumption. However, violation of the independence
assumption can increase the expected error. Another alternative is assigning
the weights for attributes. In this paper, we propose a novel attribute weighted
Naive Bayes classifier by considering weights to the conditional probabilities.
An objective function is modeled and taken into account, which is based on
the structure of the Naive Bayes classifier and the attribute weights. The
optimal weights are determined by a local optimization method using the
quasisecant method. In the proposed approach, the Naive Bayes classifier is
taken as a starting point. We report the results of numerical experiments on
several real world data sets in binary classification, which show the efficiency
of the proposed method.
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1 Introduction

Classification is the task of identifying the class labels for instances based on
a set of attributes. Learning accurate classifiers from pre-classified data is a
very active research topic in machine learning and data mining. Classification
learning is the process of predicting a discrete class label C ∈ {C1, · · · , Cm}
for a test instance X = (X1, · · · , Xn).

One of the most effective classifiers is the Bayesian Network (BN) intro-
duced by Pearl [20]. A BN is composed of a network structure and its condi-
tional probabilities. The structure is a directed acyclic graph where the nodes
correspond to domain variables and the arcs between nodes represent direct
dependencies between the variables. The classifier represented by the BN can
be expressed as:

arg max
1≤k≤m

P (Ck|X ) = arg max
1≤k≤m

P (Ck)P (X|Ck)

P (X )
; (1)

this rule is called Bayes rule. We can see that for each class, the denominator
of equation (1) is the same and it will not interfere in classification. So, the
BN classifier can be rewritten as:

arg max
1≤k≤m

P (Ck|X ) ∝ arg max
1≤k≤m

P (Ck)P (X|Ck). (2)

However, accurate estimation of P (X|Ck) is non trivial. It has been proved
that learning an optimal BN is NP-hard [4] [10]. In order to avoid the in-
tractable complexity for learning the BN, the Naive Bayes (NB) classifier has
been used. In the NB [15] [22], attributes are conditionally independent given
the class. Compared to other supervised machine learning methods, the NB
classifier is perhaps one of the simplest, yet surprisingly powerful, techniques
to construct predictive models from labeled training sets. The NB classifier is
important for several reasons. It is easy to construct and implement because
the structure is given a priori (no structure learning procedure is required) and
it needs only to compile a table of class probabilities and conditional probabil-
ities from the training instances. Therefore, it may be readily applied to huge
data sets. It is easy to interpret, and even unskilled users in classifier tech-
nology can understand why it is making the classification it makes. Finally, it
may not be the best possible classifier in any particular application, but it can
usually be relied on to be robust and to do quite well [5].

A sample of the NB classifier with n attributes is depicted in Figure 1. The
NB classifies an instance X = (X1, · · · , Xn) by selecting

arg max
1≤k≤m

P (Ck|X ) ∝ arg max
1≤k≤m

P (Ck)

n∏

i=1

P (Xi|Ck). (3)
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Fig. 1 Naive Bayes

However, the attribute independence assumption made by the NB classi-
fier harms its classification performance when it is violated in reality. In order
to relax the attribute independence assumption of the NB classifier while at
the same time retaining its simplicity and efficiency, researchers have proposed
many effective methods. These methods have been proposed in order to im-
prove the performance of the Naive Bayes classifier by alleviating the attribute
independence assumption. Among the variety of works, semi NB classifiers
[14] [16] [19] show significant improvements in the NB classifier by using the
selected subset of attributes. The Tree Augmented Naive Bayes (TAN) [8] uti-
lizes the tree structure to find relations between attributes. The Super Parent
[13] uses the same representation as the TAN, but utilizes leave-one-out cross
validation error as a criterion to add a link. The Improved Naive Bayes (INB),
proposed by Taheri et al. [22], uses conditional probabilities for finding the
dependencies between attributes.

Another way to mitigate its attributes independence assumption is assign-
ing weights to important attributes in the classification. Since attributes do
not play the same role in many real world applications, some of them are more
important than others. A natural way to extend the NB classifier is to assign a
weight to each attribute. This is the main idea of the algorithm called attribute
weighted NB. Much work to evaluate the importance of attributes has been
done in recent years [9] [11] [18] [26] [33] [31]. Jiang and Zhang [11] developed
the improved NB called weightily averaged one-dependence estimators based
on the idea of a model introduced by Webb et al. [25]. Hall [9] presented a
simple filter method for setting attribute weights to use in the NB classifier.
The assumption made is that the weight assigned to a predictive attribute
should be inversely related to the degree of dependency it has on other at-
tributes. More recently Wu and Cai [26] used differential evolution algorithms
to determine the weights of attributes in the model introduced by Hall [9]
and then they used these weights in the developed weighted NB classifier. The
paper [31] investigates how to learn a weighted NB classifier with accurate
ranking from data, or more precisely, how to learn the weights of a weighted
NB classifier to produce accurate ranking.

In this paper, we propose a new attribute weighted NB classifier, called
AWNB, which assigns more than one weight for each attribute. The number
of weights for each attribute is considered as the number of class labels. These



4 Sona Taheri et al.

weights are written in the form of powers to the conditional attribute-class
probabilities. An objective function is constructed based on the NB structure
and the attribute weights. The weights, then, are determined by using a local
optimization method, which here is the quasisecant method [2]. The initial
weights for the quasisecant method are set to unity; this means that the NB
classifier is taken as an initial point. More precisely, our aim is improving
the NB classifier by modelling a proper objective function and optimizing
the attribute weights. To find a global solution, one can also apply a global
optimization, however the complexity of the problem will increase.

Most of data sets in real world applications often involve continuous at-
tributes. The most well known attempt for improving the performance of the
NB with continuous attributes is the discretization of the attributes into inter-
vals, instead of using the default option to utilize the normal distribution to
calculate probabilities. Numerous discretization methods have been examined
for the NB learning [17] [24] [28] [29] [30]. The performance of the NB classifier
significantly improves when attributes are discretized using an entropy based
method [6]. In this paper, we use Fayyad and Irani’s discretization method [7];
a method based on a minimal entropy heuristic. We also apply the discretiza-
tion algorithm using sub-optimal agglomerative clustering algorithm which is
an efficient discretization method, recently introduced in [28].

The rest of the paper is organized as follows. In the next section, we present
a brief review of the quasisecant method. Section 3 reviews briefly two different
discretization methods, Fayyad and Irani’s method and sub-optimal agglom-
erative clustering based method, respectively. The leaning of the proposed
method is illustrated in Section 4, which follows by the experiments and dis-
cussion on the experiments in Section 5. Section 6 concludes the paper followed
by a few directions for future work.

2 A Brief Review of the Quasisecant Method

The quasisecant method [2] is a local method for solving nonsmooth, noncon-
vex optimization problems. In general, this method is applicable for solving
the following unconstrained minimization problem:

minimize f(x) (4)

where x ∈ Rd, and the objective function f is assumed to be locally Lipschitz.
Formally, quasisecants are defined as follows. Let S = {x ∈ Rd : ‖x‖ = 1}

be the unit sphere. A vector v ∈ Rd is called a quasisecant of the function f
at the point x in the direction g ∈ S with the length h > 0 iff

f(x+ hg)− f(x) ≤ h〈v, g〉.

Here 〈v, g〉 is the inner product of vectors v, g ∈ Rd. The above inequality
is called a quasisecant inequality. Quasisecants provide overestimation to the
function f in some neighborhood of a point x. There are many vectors v
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satisfying the quasisecant inequality. We consider only those which provide
approximation to the function. Subgradient-related quasisecants introduced
in [2] provide such approximations and they converge to tangents of the graph
of the function f .

Any quasisecant is defined with respect to a given direction g ∈ S and with
given length h > 0. The choice of h allows one to compute descent directions
with different lengths. Therefore, one can compute descent directions even from
some shallow local minimizers using quasisecants. This observation makes the
quasisecant method applicable to nonconvex problems and compute a “deep”
local minimizers.

On the other hand, the quasisecant method uses a bundle of quasisecants
at a given point to compute descent directions which makes it similar to the
well-known bundle methods in nonsmooth optimization. Therefore, it is ap-
plicable to solve nonsmooth optimization problems. Results presented in [2]
demonstrate that the quasisecant method is efficient and robust method for
solving nonsmooth, nonconvex optimization problems.

3 Discretization Methods

In order to apply the NB classifier to data sets with continuous attributes, one
should first discretize the attributes. Discretization is a process which trans-
forms continuous numeric values into discrete ones. In this paper, we apply
two different methods in our experiments to discretize the attributes. The first
one is the Fayyad and Irani’s discretization method, and the second one is dis-
cretization algorithm using sub-optimal agglomerative clustering proposed by
Yatsko et al. [28].

3.1 Fayyad and Irani’s Method

The Fayyad and Irani’s Discretization method is based on a minimal entropy
heuristic, and it uses the class information entropy of candidate partitions
to select bin boundaries for discretization. In this subsection, we give a brief
review to this method, and details can be found in [7].

Let us consider a given set of instances X, an attribute X, and a partition
boundary T , the class information entropy of the partition induced by T ,
denoted E(X,T ;X) is given by

E(X,T ;X) =
|X(1)|
|X| Ent(X

(1)) +
|X(2)|
|X| Ent(X

(2)),

where X(1) ⊂ X be the subset of instances in X with X-values not exceeding
T and X(1) = X −X(1). Let there be m classes C1, ..., Cm. Let P (Ci,X) be
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the proportion of instances in X that have the class Ci . The class entropy of
a subset X is defined as:

Ent(X) = −
m∑

i=1

P (Ci,X) lg(P (Ci,X)),

where the logarithm may be to any convenient base. When the base is 2,
Ent(X) measures the amount of information needed, in bits, to specify the
classes in X.

For a given attribute X, the boundary Tmin which minimizes the entropy
function over all possible partition boundaries is selected as a binary dis-
cretization boundary. This method can then be applied recursively to both of
the partitions induced by Tmin until some stopping condition is achieved, thus
creating multiple intervals on the attribute X.

Fayyad and Irani make use of the minimal description length principle to
determine a stopping criteria for their recursive discretization strategy. Recur-
sive partitioning within a set of values X stops if

Gain(X,T ;X) <
lg2(N − 1)

N
+
4(X,T ;X)

N
,

where N is the number of instances in the set X, and

Gain(X,T ;X) = Ent(X)− E(X,T ;X),

4(X,T ;X) = lg2(3m − 2)− [m.Ent(X)−m1.Ent(X
(1))−m2Ent(X

(2))],

and mi is the number of class labels represented in the set X(i). Since the
partitions along each branch of the recursive discretization are evaluated in-
dependently using this criteria, some areas in the continuous spaces will be
partitioned very finely whereas others (which have relatively low entropy) will
be partitioned coarsely.

3.2 Sub-Optimal Agglomerative Clustering based Method(SOAC)

In this section, we give a brief description of the discretization algorithm
SOAC. Details of this algorithm can be found in [28]. Consider a finite set
of points X in the n−dimensional space Rn, that is X = {X1, ...,XN}, where
Xi ∈ Rn, i = 1, ..., N . Assume the sets Aj , j = 1, ..., k be clusters, and each
cluster Aj can be identified by its centroid Xj ∈ Rn, j = 1, ..., k. The dis-
cretization algorithm SOAC proceeds as follows.
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Step 1. Set k = N, and a small value of parameter θ, 0 < θ < 1. Sort values of the
current feature in the ascending order. Each continuous feature requiring
discretization is treated in turn.

Step 2. Calculate the center of each cluster, Xj =
∑
X∈Aj

X
|Aj | , j = 1, ..., k and the

error Ek of the cluster system approximating set X, Ek =
∑k

j=1

∑
X∈Aj

‖Xj −X‖2.

Step 3. Merge in turn each cluster with the next tentatively. Calculate the error
increase Ek−1 − Ek after each merge and choose the pair of clusters giving the least
increase. Merge these two clusters permanently. Set k = k − 1.

Step 4. If Ek ≥ θE1, then stop, otherwise go to Step 2.

Algorithm 1: Discretization Algorithm SOAC

4 Learning the Proposed Attribute Weighted Naive Bayes using
Optimization

Good attribute weighting can eliminate the effects of noisy or irrelevant
attributes. In this section, we propose a weighting procedure, in which each
conditional attribute-class probability has its own power as a weight. The
number of weights for each attribute is equal to the number of class labels.
The idea of our weighting method is similar to the works in [26] [33], how-
ever constructing a proper objective function and utilizing the new weighting
procedure are different from the existing methods.

Let us consider D = {Xi, Ci}, 1 ≤ i ≤ N , where N is the number
of instances and Ci ∈ {C1, ..., Cm}. Xi is an n-dimensional vector, Xi =
(Xi1, Xi2, ..., Xin), n is the number of attributes, and Ci is the class label.
In this paper, we consider the binary classification and assume that the two
classes are, 1 and −1. Then, for each attribute, we define two weights, one
corresponding to the class C1 = 1 and another to the class C2 = −1. By con-
sidering two weights for each attribute, the attribute weighted NB classifies
an instance Xi by selecting:

arg max
1≤k≤2

P (Ck)
n∏

j=1

P (Xij |Ck)wjk . (5)

In equation (5), there are two alternatives for k in wjk. We denote these
cases by wj and wj if Xi is allocated to the real class and its counterpart,
respectively. Considering that Ck is the real class of Xi, the value of P (Ck|Xi) is
expected to be greater than the value of P (Ck|Xi) for the majority of instances,
i = 1, ..., N, where Ck = −Ck. Then, it is quite natural that the value of

P (Ck)
n∏

j=1

P (Xij |Ck)wj (6)

should be maximized, while the value of
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P (Ck)

n∏

j=1

P (Xij |Ck)wj (7)

to be minimized. Therefore one possible objective function for the NB classifier,
by considering the weights for attributes, can be written as follows:

maximize f(w) =
N∑

i=1

P (Ck)
∏n

j=1 P (Xij |Ck)wj − P (Ck)
∏n

j=1 P (Xij |Ck)wj

P (Ck)
∏n

j=1 P (Xij |Ck)wj + P (Ck)
∏n

j=1 P (Xij |Ck)wj
,

(8)
where w = (w1, w1, w2, w2, ..., wn, wn) is a set of unknown variables (attribute
weights). The objective function (8) is similar to the objective function pre-
sented in [23]. The weights in (8) are considered as positive numbers. Also, we
put an upper limit for these weights to prevent large numbers. So, we maximize
the above objective function over a hyper box [a, b]. Therefore, the problem
(8) can be formulated as a constrained optimization problem:

minimize − f(w) (9)

subject to wi, wi ∈ [a, b], 1 ≤ i ≤ n.
Different methods can be applied to transfer the problem (9) to an uncon-

strained optimization. One of the well-known methods is the penalty method,
which is used here. To find the weights in (9), a local optimization method
is applied, which here is the quasisecant method presented in Section 2. The
NB classifier is taken as a starting point for the quasisecant method. More
precisely, we initialize all the weights to unity, then we use the quasisecant
method to find the attribute weights for further improvement. In other words,
we search for an optimal classifier starting with the NB classifier. It is noted
that a global optimization is also applicable to find the global solution of the
problem (9), but the complexity of the problem will increase.

5 Experiments

5.1 Data collections

This paper studies 16 benchmark data sets taken from the literature. A brief
description of the data sets is given in Table 1. The detailed description of
the first eleven data sets used in this experiments can be found in the UCI
repository of machine learning databases [1], and the last five data sets are
downloadable on the tools page of the LIBSVM [3]. These data sets have been
analyzed quite frequently by the current data mining approaches. Another
reason for selecting these data sets were that conventional approaches have
analyzed them with variable success.
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5.2 Results and discussion

We conduct empirical comparison for the Naive Bayes (NB), the Tree Aug-
mented Naive Bayes (TAN), the improved Naive Bayes (INB) proposed by
Taheri et al. [22], and the attribute weighted Naive Bayes (AWNB) in terms
of accuracy. The structure of the TAN and the INB are originated from the
structure of the NB, in which each attribute has at most one augmenting edge
pointing to it. The relations between attributes in the TAN are found by using
the tree procedure [8], while the INB uses conditional probabilities for finding
the correlations [22].

We discretize the values of continuous attributes in data sets using two
different methods. In the first one, we apply Fayyad and Irani’s discretization
method [7]. The second one is the discretization algorithm SOAC [28].

For each method, we run 50 trials and then the average accuracy over the
50 runs are calculated. The accuracy of the methods in each run is calculated
using 10-fold cross validation with random orders of data records in partition-
ing training and test data sets to have more reliable results. More precisely,
each fold contained 10% of the data set randomly selected (without replace-
ment). For consistent comparison, the same folds, including the same training
and test data sets, are used in implementing the methods.

The penalty parameter is chosen as µ = 106. We set the lower and upper
limits in (9) as a = 0.1, b = 10.

Table 2 presents the average accuracy obtained by the NB, the TAN, the
INB and the AWNB on 16 data sets, where continuous attributes are dis-
cretized by applying Fayyad and Irani’s method [7]. The results presented in
this table demonstrate that the accuracy of the proposed method (AWNB) is
much better than that of the NB in all data sets. It is also shown a higher
accuracy of the AWNB, in general, compared to the results obtained by the
TAN and the INB. The proposed method outperforms the both methods (the
TAN and the INB) in most of data sets, and the accuracy of this method
slightly less or almost ties with the TAN and the INB in a few cases.

The results of the average accuracy obtained by the methods on 16 data
sets using discretization algorithm SOAC are reported in Table 3. The results
show that the accuracy obtained by the proposed method (AWNB) in all data
sets are higher than those of the NB. The accuracy of the AWNB is also higher
than those of the TAN and the INB in most of data sets, and the accuracy of
the AWNB almost ties with those of the TAN and the INB in a few cases.

Figure 2 shows the scatter plots comparing the average miss-classifications
of the proposed attribute weighted Naive Bayes, AWNB, with those of the
NB, the TAN and the INB using two different discretization methods. In these
plots, each point represents a data set, where the horizontal axis shows the per-
centage of miss-classifications according to the NB, the TAN and the INB and
the vertical axis is the percentage of miss-classification according to the pro-
posed method, AWNB. Therefore, points below the diagonal line correspond
to data sets where the AWNB performs better, and points above the diago-
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nal line correspond to data sets where the other mentioned methods perform
better.

According to the results explained above, the proposed attribute weighted
Naive Bayes, AWNB, works well in that it improves the results of the NB
classifier. Moreover, in general, it outperforms the TAN and the INB so that
it’s accuracy in most of the data sets are higher than those of the the TAN
and the INB. In a few cases, the TAN and the INB perform slightly better
than the proposed method, and the results are acceptable as the two methods
are also developments on the NB classifier.

The complexities of the methods are not compared in this work, since dif-
ferent softwares are used to implement the methods. The proposed method
is coded in Matlab, while others are coded in Fortran. It is clear that the
complexity of the proposed method is higher than the others due to the com-
plexity of the optimization procedure. A global optimization is also applicable
to determine the weights for the attributes. Although it may cause a better
accuracy, a higher level of computational effort is required.

6 Conclusions

In this paper, we proposed a classifier based on attribute weighted Naive Bayes,
AWNB. A novel weighting method for attribute weighted NB classifier was in-
troduced, in which for each attribute we used more than one weight depending
on the number of class labels. An objective function consisting of the attribute
weights based on the structure of the NB classifier was then modeled to opti-
mize the attribute weights. This objective function was optimized by a local
optimization using the quasisecant method. The initial values in the quasise-
cant method were chosen as one; meaning that the NB classifier was taken as
a starting point.

We carried out a number of experiments on some data sets obtained from
the UCI machine learning repository and LIBSVM. The numerical results
demonstrated that the proposed method has positive impact on the NB accu-
racy as expected. How this attribute weighting for the NB classifier performs
in multi class data sets remains an important question for future work.

References

1. A. Asuncion, D. Newman, UCI machine learning repository. School
of Information and Computer Science, University of California (2007)
http://www.ics.uci.edu/mlearn/MLRepository.html.

2. A. M. Bagirov, A. Nazari Ganjehlou, A quasisecant method for minimizing nonsmooth
functions. Optimization Methods and Software, Vol. 25, No. 1, 3-18 (2010)

3. C. Chang, C. Lin, LIBSVM: A library for support vector machines (2001) Software
available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

4. D.M. Chickering, Learning Bayesian Networks is NP-complete, In: Fisher, D., Lenz, H.
Learning from data: Artificial Intelligence and statistics V, Springer, 121-130 (1996)

5. P. Domingos, M. Pazzani, On the optimality of the simple Bayesian classifier under
zero-one loss, Mach Learn 29, 103-130 (1997)



Attribute Weighted Naive Bayes Classifier Using a Local Optimization 11

6. J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of con-
tinuous features, In Proceedings of the 12th International Conference on Machine Learn-
ing, 194-202 (1995)

7. U.M. Fayyad, K.B. Irani, On the Handling of Continuous-Valued Attributes in Decision
Tree Generation, Machine Learning 8, 87-102 (1993)

8. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine Learning
29, 131-163 (1997)

9. M. Hall. A Decision Tree-Based Attribute weighting Filter for Naive Bayes, In Knowledge-
Based Systems, Vol 20, 120-126 (2007)

10. D. Heckerman, D.M. Chickering, C. Meek, Large-Sample Learning of Bayesian Networks
is NP-Hard, Journal of Machine Learning Research, 1287-1330 (2004)

11. L. Jiang, H. Zhang, Weightily Averaged One-Dependence Estimators, Proceedings of
the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, Guilin,
China, 970-974 (2006)

12. L. Jiang, D. Wang, Z. Cai, X. Yan, Survey of improving naive Bayes for classifica-
tion, In Proceedings of the 3rd International Conference on Advanced Data Mining and
Applications, Springer, vol. 4632, 134-145 (2007)

13. E.J. Keogh, M.J. Pazzani, Learning augmented Bayesian classifiers: A comparison of
distribution-based and classification-based approaches, In: Proc. Int. Workshop on Artifi-
cial Intelligence and Statistics, 225-230 (1999)

14. R. Kohavi, Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid,
In: Proc. 2nd ACM SIGKDD Int, Conf, Knowledge Discovery and Data Mining, 202-207
(1996)

15. P. Langley, W. Iba, K. Thompson, An Analysis of Bayesian Classifiers, In 10th Inter-
national Conference Artificial Intelligence, AAAI Press and MIT Press, 223-228 (1992)

16. P. Langley, and S. Saga, Induction of selective Bayesian classifiers, In: Proc. Tenth Conf,
Uncertainty in Artificial Intelligence, Morgan Kaufmann, 399-406 (1994)

17. J. Lu, Y. Yang, G. I. Webb, Incremental Discretization for Naive-Bayes Classifier,
Springer, Heidelberg, Vol. 4093, 223-238 (2006)

18. S. Ozsen, S. Gunecs, Attribute weighting via genetic algorithms for attribute weighted
artificial immune system (AWAIS) and its application to heart disease and liver disorders
problems, Expert Systems with Applications, 36, 386-392 (2009)

19. M.J. Pazzani, Constructive induction of Cartesian product attributes, ISIS: In- forma-
tion, Statistics and Induction in Science, 66-77 (1996)

20. J. Pearl, Probabilistic Reasoning in Intelligent Systems: networks of plausible inference,
Morgan Kaufmann (1988)

21. W. Sun, Y.X. Yuan, Optimization theory and methods: nonlinear programming,
Springer (2006)

22. S. Taheri, M. Mammadov, A. M. Bagirov, Improving Naive Bayes Classifier Using Con-
ditional Probabilities, In the proceedings of Ninth Australasian Data Mining Conference
(AusDM 2011), Ballarat, Australia. Vol. 125, (2011)

23. S. Taheri, M. Mammadov, Tree Augmented Naive Bayes Based On Optimization, Pro-
ceeding of 42nd Annual Iranian Mathematics Conference, Vali-e-Asr University of Rafsan-
jan, Iran (2011)

24. S. Wang, F. Min, Z. Wang, T. Cao, OFFD: Optimal Flexible Frequency Discretization
for Naive Bayes Classification, Springer, Heidelberg, 704-712 (2009)

25. . G. I. Webb, J. Boughton, Z. Wang, Not so naive bayes: Aggregating one dependence
estimators, Machine Learning, Vol. 58, 5-24 (2005)

26. J. Wu, Z. Cai, Attribute Weighting via Differential Evolution Algorithm for Attribute
Weighted Naive Bayes (WNB), Journal of Computational Information Systems 7:5, 1672-
1679 (2011)

27. W. Xindong et al., Top 10 algorithms in data mining, Knowl Inf Syst, 14, 1-37 (2008)
28. A. Yatsko, A. M. Bagirov, A, Stranieri, On the Discretization of Continuous Features for

Classification, School of Information Technology and Mathematical Sciences, University
of Ballarat Conference, (2010)
(http://researchonline.ballarat.edu.au:8080/vital/access/manager/Repository)

29. Y. Ying, I. Geoffrey, Discretization For Naive-Bayes Learning: Managing Discretization
Bias And Variance, In Machine Learning, 74(1), 39-74 (2009)



12 Sona Taheri et al.

30. Y. Ying, Discretization for Naive-Bayes Learning, PhD thesis, school of Computer Sci-
ence and Software Engineering of Monash University (2003)

31. H. Zhang, S. Sheng, Learning weighted naive Bayes with accurate ranking, In Proceeding
of the 4th IEEE International Conference on Data Mining, 567-570 (2005)

32. F. Zheng, G.I. Webb, Semi-naive Bayesian Classification, Journal of Machine Learning
Research (2008)

33. Y. Zhou T. S. Huang, Weighted Bayesian Network for Visual Tracking, Proceedings of
the 18th International Conference on Pattern Recognition (ICPR’O6), 0-7695-2521-0106
(2006)

Table 1 A brief description of data sets

Data sets # Instances # Attributes

Breast Cancer 699 10
Congressional Voting Records 435 16
Credit Approval 690 15
Diabetes 768 8
Haberman’s Survival 306 3
Heart Disease 303 14
Ionosphere 351 34
Liver Disorders 345 6
Phoneme CR 5404 5
Sonar 208 60
Spambase 4601 57
Fourclass 862 2
German.numer 1000 24
Splice 3175 60
Svmguide1 7089 4
Svmguide3 1284 21
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Table 2 Test set accuracy averaged over 50 runs for data sets using Fayyad and Irani’s
discretization method. NB stands for Naive Bayes, TAN for Tree Augmented Naive Bayes,
INB for improved Naive Bayes and AWNB for attribute weighted Naive Bayes

Data sets NB TAN INB AWNB

Breast Cancer 97.18 96.52 97.63 97.74
Congressional Voting Records 90.11 93.21 93.47 94.24
Credit Approval 86.10 84.78 86.72 86.91
Diabetes 74.56 75.14 76.06 75.98
Haberman’s Survival 75.09 74.41 77.03 76.83
Heart Disease 82.93 81.23 83.36 85.57
Ionosphere 88.62 89.77 88.98 89.61
Liver Disorders 63.26 63.18 64.89 65.79
Phoneme CR 77.56 78.31 77.71 78.22
Sonar 76.32 76.47 76.41 76.39
Spambase 90.41 89.78 92.87 92.43
Fourclass 77.46 77.61 78.61 78.91
German.numer 74.50 73.13 75.91 76.79
Splice 95.43 94.87 95.91 95.88
Svmguide1 92.39 91.61 94.04 93.97
Svmguide3 81.23 82.47 84.98 87.44

Table 3 Test set accuracy averaged over 50 runs for data sets using discretization algorithm
SOAC. NB stands for Naive Bayes, TAN for Tree Augmented Naive Bayes, INB for improved
Naive Bayes and AWNB for attribute weighted Naive Bayes

Data Sets NB TAN INB AWNB

Breast Cancer 96.12 95.60 96.45 96.56
Congressional Voting Records 90.11 91.42 91.47 94.52
Credit Approval 85.85 84.98 86.85 86.79
Diabetes 75.78 75.90 77.68 77.53
Haberman’s Survival 74.66 76.08 75.33 75.91
Heart Disease 78.62 77.37 79.31 82.41
Ionosphere 85.92 86.18 85.97 86.11
Liver Disorders 65.82 65.73 66.51 66.85
Phoneme CR 77.01 78.53 79.36 79.65
Sonar 75.09 75.76 75.83 75.69
Spambase 89.30 89.04 92.30 92.44
Fourclass 78.58 79.52 79.70 79.76
German.Numer 74.61 74.01 75.23 75.81
Splice 92.12 93.04 92.39 92.87
Svmguide1 95.61 94.91 97.54 97.43
Svmguide3 77.25 79.99 80.85 81.23
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Fig. 2 Scatter plot comparing the average miss-classifications of the proposed method
(AWNB) with Naive Bayes (NB), Tree Augmented Naive Bayes (TAN), Improved Naive
Bayes (INB); Using Fayyad and Irani’s discretization method (FAIR) and Sub-Optimal
Agglomerative Clustering based Method (SOAC)


