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Abstract This study investigates use of water quality

(WQ) variables, namely total chromium concentration, total

iron concentration, and turbidity for predicting suspended

sediment concentration (SSC). For this purpose, the artificial

neural networks (ANNs) and regression analysis (RA)

models are employed. Seven different RA models are con-

structed, considering the functional relation between mea-

sured WQ variables and SSC. The WQ and SSC data are

fortnightly obtained from six monitoring stations, located on

the stream Harsit, Eastern Black Sea Basin, Turkey. A total

of 132 water samples are collected from April 2009 to

February 2010. Model prediction results reveal that ANN

is able to predict SSC from WQ data, with mean absolute

error (MAE) of 10.30 mg/L and root mean square error

(RMSE) of 13.06 mg/L. Among seven RA models, the best

one, which has the form including all independent parame-

ters, produces results comparable to those of ANN, with

MAE = 14.28 mg/L and RMSE = 15.35 mg/L. The sen-

sitivity analysis results reveal that the most effective

parameter on the SSC is total chromium concentration.

These results have time- and cost-saving implications.

Keywords Artificial neural networks � Regression

analysis � Stream Harsit � Suspended sediment

concentration � Total chromium � Total iron � Turbidity

1 Introduction

Suspended sediment is a constituent of water quality (WQ)

that is monitored because of concerns about accelerated

erosion, nonpoint contamination of water resources, and

degradation of aquatic environments [1]. The transport of

sediment in rivers is also important with respect to channel

navigability, reservoir filling, hydroelectric-equipment

longevity, fish habitat, river esthetics, and other scientific

interests [2]. Sediment loads in rivers basically consist of

bed load and suspended sediment [3]. Suspended sediment

constitutes 75–95 % of the total load [4].

Suspended sediment load (SSL) of a river is generally

obtained by direct analysis of the SSC or by using sediment-

rating curve (SRC) method. Although direct analysis is the

most dependable method, it is very costly, time consuming,

and, in many instances, problematic for inaccessible sec-

tions, especially during floods, and cannot be conducted for

all river gauge stations. This may be the reason for having

fewer operational sediment gauging stations on Turkish

rivers. In general, before building a water structure such as a

dam or a weir, the EİE (General Directorate of Electrical

Power Resources Survey and Development Administration)

or the DSİ (General Directorate of State Hydraulic Works)

builds temporary gauging stations to measure sediment.

Soon after the structure becomes operational, the gauging

stations are either removed or not operated [5–8]. Hence,

researchers have looked for alternative options for sediment

predictions. One of these options is to do the predictions

using other parameters, such as discharge [9], precipitation

[3], turbidity [1, 10], and water quality [11].

Much research has been done to correlate secondary

parameters to suspended sediment, such as discharge, tur-

bidity, and water density. Minella et al. [10] assessed

the relationship between SSC and turbidity for a small
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(1.19 km2) rural catchment in southern Brazil, and evalu-

ated two calibration methods by comparing the estimates of

SSC obtained from the calibrated turbidity readings with

direct measurements obtained using a suspended sediment

sampler. Meral et al. [11] used two practical and relatively

cheap alternative methods (namely turbidity sensor and

Imhoff cone method) to estimate SSC. Williamson and

Crawford [1] aimed to quantify the potential for estimating

SSC using two surrogate sediment parameters (TSS and

turbidity) in order to enable regional and site-specific

modeling of sediment concentrations in Kentucky streams.

Recently, the neural networks approach has been

applied to many branches of science [12–16]. The approach

is becoming a strong tool for providing hydraulic and

environmental engineers with sufficient details for design

purposes and management practices. The technique has a

growing body of applications for river engineering and

water resources [17–19]. ANNs employment in suspended

sediment estimation and prediction has been worked out.

Nagy et al. [9] developed an ANN model to estimate SSC

in rivers, achieved by training the ANN model to extrap-

olate several stream data collected from reliable sources.

The network was set up using several parameters, such as

Froude number, stream width ratio, mobility number and

Reynolds number, as the input pattern and the SSC as the

output pattern. Kisi et al. [20] analyzed and discussed the

performance of adaptive neuro-fuzzy technique, radial

basis neural network, feed-forward neural network, and

generalized regression neural network in the prediction of

suspended sediment. Rajaee et al. [21] considered ANNs,

neuro-fuzzy, multi-linear regression, and conventional

SRC models for time series modeling of SSC in rivers. The

models are trained using daily river discharge and SSC data

belonging to Little Black River and Salt River gauging

stations in the USA. Wang et al. [22] investigated the

potential of two algorithm networks, the feed-forward back

propagation and generalized regression neural network, in

comparison with the classical regression for modeling the

event-based SSC at Jiasian diversion weir in Southern

Taiwan. Mount and Abrahart [23] reported a comprehen-

sive set of single-input single-output neural network sus-

pended sediment modeling experiments performed on two

catchments in Puerto Rico. Bayram et al. [24] evaluated

whether the turbidity can produce a satisfactory prediction

of the SSC, and improve an ANN method estimating the

SSC based on in situ turbidity measurements in the stream

Harsit, Eastern Black Sea Basin, Turkey. Demirci and

Baltaci [25] proposed a fuzzy logic approach to estimate

SSC from streamflow.

The stream Harsit having a length of 143 km and

catchment area of 3,280 km2 is an important sub-watershed

in the Eastern Black Sea Basin, Turkey. There are two

large dams and a lot of hydroelectric power plants (HEPPs)

on the Harsit. The watershed is susceptible to erosion due

to its vegetation cover and steep topography. For example,

SSC values can exceed 500 mg/L for the upstream of Torul

Dam in operation on the stream Harsit. There are a number

of flow monitoring stations operated by DSİ and EİE on the

watershed, but SSC monitoring is not sufficient. Therefore,

determination of SSC values along the stream Harsit is

very important with respect to life and management of the

water structures.

The purpose of this paper is to investigate whether WQ

variables of total chromium concentration (mg Cr/L), total

iron concentration (mg Fe/L), and turbidity (NTU) can

produce a sufficient prediction of the SSC. Cr and Fe

concentrations are used for the first time to predict the SSC.

A surface water quality study including twenty variables

was conducted on a fortnightly basis from April 2009 to

February 2010 for the stream Harsit. Of these variables, by

the factor analysis, only three were selected as model input

vectors.

2 Artificial neural network approach

ANNs are inspired by biological systems with large num-

bers of neurons, which collectively perform tasks that even

the largest computers have been unable to match. The

function of an artificial neuron is similar to that of a real

neuron: It communicates by sending signals to other arti-

ficial neurons over a large number of biased or weighted

connections. Each of these neurons has an associated

transfer function describing how the weighted sum of its

input is converted to an output (Fig. 1).

There are different types of ANNs, based on neuron

arrangement and their connections, and training paradigm.

Among the various types of ANNs, the multi-linear per-

ceptron (MLP) network trained with the back propagation

algorithm is the most common one in engineering appli-

cations [26].

In a feed-forward ANN, the input quantities are fed into

the input layer neurons that, in turn, pass them on to the

hidden layer neurons after multiplication by connection

weights. A hidden layer neuron adds up the weighted input

received from each input neuron and associates it with a

Fig. 1 Artificial neuron
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bias. The result is then passed on through a nonlinear

transfer function to produce an output.

The learning of ANNs is generally accomplished by the

most commonly used supervised training algorithm of the

back propagation algorithm. The objective of this algo-

rithm is to find the optimal weights that would generate an

output vector Y = (y1, y2, …, yp) as close as possible to the

target values of the output vector T = (t1, t2, …, tp) with

the selected accuracy. The optimal weights are found by

minimizing a predetermined error function (E) of the fol-

lowing form [26]:

E ¼
X

P

X

p

yi � tið Þ2 ð1Þ

where yi = the component of an ANN output vector Y;

ti = the component of a target output vector T; p = the

number of output neurons; and P = the number of training

patterns.

In the back propagation algorithm, the effect of the input

is first passed forward through the network to reach the

output layer. After the error is computed, it is then prop-

agated back toward the input layer with the weights being

modified. The gradient-descent method, along with the

chain rule of differentiation, is employed to modify the

network weights as [26]:

DvijðnÞ ¼ �d
oE

ovij

þ a Dvijðn� 1Þ ð2Þ

where DvijðnÞ and Dvijðn� 1Þ = the weight increments

between node i and j during the nth and (n - 1)th pass or

epoch; d = the learning rate; and a = the momentum

factor.

Figure 2 schematically presents the MLP employed in

this study. The details of ANNs are given in Tayfur [26].

3 The study area

Turkey is hydrologically divided into 26 drainage basins.

Eastern Black Sea Basin having a recharge area of

24,077 km2 and a surface water potential of 15,331 billion

cubic meters is one of the most important basins in Turkey

and a major part of Caucasus Ecological Region together

with Coruh and Aras Basins (Fig. 3). The Eastern Black

Sea Basin consists of 17 sub-watersheds, and the stream

Harsit watershed having a main branch length of 143 km,

and catchment area of 3,280 km2 has a place in these sub-

watersheds [24, 27–32].

The stream Harsit originates from Vauk Mountains in the

east border of Gumushane Province and formed by small

streams joining together. After it is formed, Harsit passes

through the towns and cities, namely Tekke, Gumushane,

Torul, Ozkurtun, Kurtun, and Dogankent, respectively, and

poured into the Black Sea in Tirebolu town of Giresun

Province (Fig. 3). The streams Arzular, Korum, Ikisu, Cit,

Kurtun, and Gavraz are important tributaries of it. There are

four HEPPs in operation for the time being on Harsit,

namely Akkoy I HEPP, Dogankent HEPP, Kurtun Dam and

HEPP, Torul Dam and HEPP [24, 27–32]. Many dams and

HEEPs are also under construction or planned, namely

Akkoy II, Aladerecam, Aslancik, Avluca, Cileklikaya,

Duzoren, Elmali, Gocen, Gokcebel, Koru, Kovacik, Kul-

etas, Tasoba, Tirebolu, Sogukpinar, Yasmakli, and so on.

4 Materials and methods

4.1 Turbidity measurements

The stream water turbidity was determined in situ using

portable field meter in terms of nephelometric turbidity units

(NTU). The field meter uses the light-absorption–scattering

method. Irradiation of a beam of light onto a sample brings

about separation of the beam into (1) the light transmitted by

the solution and (2) the light scattered by turbidity compo-

nents in the sample. In the light-absorption–scattering

method, the intensity of both transmitted light and the scat-

tered light are measured using separate receptors, and the

turbidity is obtained based on the ratio of the two.

4.2 Surface water sampling

The surface water samples were fortnightly hand-collected

at six monitoring stations named as H1, H2, H3, H4, H5,

and H6, which are located in the course of the stream

Harsit before the Torul concrete faced rock-fill dam during

the study period of April 2009–February 2010 (Fig. 3).

Detailed information of the sampling points is given in

Table 1. One-liter surface water was sampled fromFig. 2 The architecture of back propagation network model
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approximately mid-depth of flow. High-density polyethyl-

ene bottles having 500 mL volume were rinsed with the

stream water, shaken vigorously, and emptied before

refilling for the analysis [24, 33]. Sampling, preservation,

and transportation of the stream water samples to the lab-

oratory were as per standard methods [34].

4.3 Determination of the SSC

The surface water samples were firstly filtered through a

glass microfiber disc (Sartorius, FT-3-1103-055) having 1.2-

lm pore size under vacuum in order to separate the water

from the suspended sediment; once the water was clarified,

the material collected was then oven-dried at 105 �C for

about 12 h, until the matter reached a constant weight. SSC

was then determined in laboratory in terms of mg/L [24, 33].

4.4 Determination of the total chromium and total iron

Total chromium and total iron concentrations from sedi-

ment and water for the unfiltered surface water samples

were determined using a UV–vis spectrophotometer

according to the standard methods [34]. The analyses were

carried out in triplicate in room temperature (21 ± 2 �C)

and their mean values were used.

5 SSC prediction

5.1 Regression model

Multiple linear and nonlinear (exponential, power, loga-

rithmic, inverse, joint, growth, and S functions) regression

analyses were performed. The following seven models

which produced satisfactory results are presented here as

follows:

Model 1 : SSC ¼ cþ b1T þ b2T2 þ b3T3 ð3Þ

Model 2 : SSC ¼ cþ b1 Crþ b2 Cr2 þ b3 Cr3 ð4Þ

Model 3 : SSC ¼ cþ b1 Feþ b2 Fe2 þ b3 Fe3 ð5Þ

Model 4 : SSC ¼ c Crb2 Feb3 ð6Þ
Model 5 : SSC ¼ exp ðcþ b1T þ b2 CrÞ ð7Þ
Model 6 : SSC ¼ exp ðcþ b1T þ b3 FeÞ ð8Þ
Model 7 : SSC ¼ exp ðcþ b1T þ b2 Crþ b3 FeÞ ð9Þ

Fig. 3 Locations of study area

and sampling sites on the stream

Harsit

Table 1 Localization of the surface water sampling stations in the

stream Harsit

The stations Coordinates Altitude

(m)

km of the

course

H1 40�24007.400N–39�38029.300E 1,274 0.0

H2 40�24054.000N–39�34037.600E 1,234 6.5

H3 40�25023.600N–39�31037.700E 1,190 12.5

H4 40�29036.600N–39�27030.400E 1,100 24.0

H5 40�32055.700N–39�18052.500E 939 39.5

H6 40�33056.700N–39�17054.600E 910 45.0
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In these equations, b1, b2, b3, and c are the regression

coefficients. The regression coefficients were estimated by

the least squares method for all of the models. The R2

values for the models are given in Table 2.

5.2 ANN model

The main objective of this section is to develop an ANN

model that predicts the SSC from given total Cr, total Fe,

and turbidity data. When designing an ANN, it is important

to choose the proper network size. If the network is too

small, it may not have enough free parameters to represent

the data adequately. If the network is too big, it can either

fail to classify the data as meaningful categories or reject

new patterns as too dissimilar from the training set. In

general, finding a suitable network structure is a matter of

trial and error, although an educated guess can be made by

comparing the size of the training data set to the number of

free parameters in the network. As shown in Fig. 2, a three-

layer, feed-forward network is selected for this study. Each

layer is fully connected to the next, but no connections

exist between neurons in the same layer. The first and third

layers contain the input and output variables, respectively.

Seven different models were used to train the neural net-

work (Fig. 4). The SSC is the output variable for all

models. The order of variables in the input layers is tur-

bidity, total Cr, and total Fe, respectively.

The fortnightly stream WQ data are divided into 96

training, 24 testing, and 12 validation patterns, respec-

tively. Input values for the testing, training, and validation

data are shown in Table 3.

Before the training of the network, the data are nor-

malized to range [0.1, 0.9] since the sigmoid activation

function is used.

The selected network size represents a compromise

between generalization and convergence. Convergence is

the capacity of the network to learn the pattern in the

training set, and generalization is its capacity to respond

correctly to new patterns. One hidden layer is sufficient for

most applications [12]. Since determining the number of

nodes in the hidden layer is not an exact science, several

networks with different numbers of hidden nodes are tes-

ted. The parameters of the optimum ANN structures are

given in Table 4. To begin the training process, all of the

training patterns are introduced a network initialized with

random weights.

In this study, the weights are initialized into random

values between -0.5 and ?0.5, according to commonly

accepted procedure. The factors a and d in Eq. (2) also

influence the convergence. The learning rate (d) is the

constant of proportionality for the generalized back prop-

agation rule. The larger its value, the greater the changes in

the weights at each iteration. The momentum term (a) is

used to prevent the network from oscillating around a local

minimum in the parameter space. Several combinations of

a and d are tested in order to find a neural network with

good convergence (Table 4).

Table 2 Regression coefficients and R2 value for the regression

analysis

Model no. c b1 b2 b3 R2

1 15.383 0.036 0.003 -2.2639106 0.813

2 1.122 1,053.972 2,743.952 4,721.486 0.789

3 27.098 -16.833 17.016 -1.050 0.824

4 21.417 – 1.384 -0.057 0.804

5 3.423 0.002 – 6.346 0.875

6 3.440 0.001 0.226 – 0.835

7 3.405 0.002 0.042 5.318 0.876

Fig. 4 ANNs architectures

used for the prediction of the

SSC
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Memorization (overtraining) is a fundamental problem

encountered in training of ANN. To prevent this, the

training is terminated when the network begins to memo-

rize by using the cross-validation patterns [26]. In this

situation, training set error continues to decrease, although

testing set error does not change. The performance of a

network may be enhanced by increasing the number of

training samples, the length of training (number of epochs),

or the number of hidden layer nodes. Choosing different

values for the learning rate (a) and momentum (d) may also

change the performance of a network. However, all of

these methods increase the computation time required to

train the network. It is very important to strike a balance

between performance and training time. Table 5 shows the

structure of the ANNs giving the best results.

6 Results and discussion

When the ANN analysis was performed with the models 1,

2, 3, 4, 5, 6, and 7, the minimum root mean square error

(RMSE) in the testing sets was obtained for the model 7

with a = 1.00 and d = 0.75 as 20.38 mg/L (Table 5). The

smallest mean absolute error (MAE) of the testing data set

in this case was 11.67 mg/L. Errors may be reduced if the

stopping criterion, the epoch number, is increased. Besides,

conjugate gradient or scaled conjugate gradient methods

may be used to reduce maximum relative error instead of

generalized delta rule in learning. Also, different network

structures with one or more hidden layers or nodes with

different learning rates and momentum terms may produce

smaller error.

Figures 5 and 6 display the performances of the ANN

and regression analyses for the testing and validation data,

and the accuracy of the ANN approach for the best-fitting

model (model 7). Each plus sign stands for a testing and

validation vectors in the both figures. Also, the results

obtained from RA for the same values are shown with

multiply sign in the same figures. The nearer the points

gather around the diagonal, the better the learning results

are. The RMSE and MAE of the points on the diagonal are

zero. While the RMSE and MAE values obtained from the

testing set for the ANNs in the model 7 are 20.38 and

11.67 mg/L, these values for the RA are 29.43 and

21.56 mg/L, respectively. Similarly, the RMSE and MAE

for the validation set in the ANNs in the model 7 are 13.05

and 10.29 mg/L, and the same values for the RA are 15.35

and 14.28 mg/L, respectively (Table 6).

7 Sensitivity analysis

Sensitivity analysis was performed to describe the relations

between input and output parameters. To that end, cosine

amplitude method was selected. This method is one of the

Table 3 Fortnightly data used

in the ANNs models

Table 4 Parameters used for different ANN structures

Number of hidden layer unit Learning rate (a) Momentum (d)

2 0.10 0.10

3 0.25 0.25

5 0.50 0.50

8 0.75 0.75

1.00 1.00
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sensitivity analysis methods that is used to express simi-

larity relations between the related parameters [15, 35]. In

this method, all the relevant data pairs are expressed in a

common X-space. The data array X can be defined as:

X ¼ x1; x2; . . .; xmf g ð10Þ

Each of the elements, xi, in the data array X is a vector of

length m, that is:

Xi ¼ x1m; x2m; . . .; ximf g ð11Þ

Thus, each of data set is a point in m-dimensional space,

where each point requires m-coordinates for a full

description. Each point of this space has relation with the

final results in a pairwise comparison [16]. The amount of

the relation between the data sets, xi and xj, is denoted by

Eq. (12).

rij ¼
Pm

k¼1 xikxjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x2

ik

Pm
k¼1 x2

jk

q ð12Þ

Figure 7 shows the strengths of relations between output

(SSC) and input (turbidity, total Fe, total Cr) parameters.

As can be observed in Fig. 7, the most effective parameter

on the SSC is total Cr, and then total Fe and turbidity

follow.

Table 5 Characteristics of ANN giving the best results

Model

no

Number of

hidden layer

unit

a d Epoch Training

error

Testing

error

1 3 0.25 1.00 46 0.9219 0.0152

2 3 1.00 0.10 142 0.9053 0.0148

3 2 0.50 0.10 73 0.9735 0.0159

4 5 0.10 1.00 13,901 0.1230 0.0145

5 2 0.10 0.10 32 0.6914 0.0147

6 8 0.10 1.00 11 0.7293 0.0137

7 8 1.00 0.75 20,000 0.1242 0.0128
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Table 6 The error values for each method

Model
no

RMSE (mg/L)
for testing

MAE (mg/L)
for testing

RMSE (mg/L)
for validation

MAE (mg/L)
for validation

ANNs RA ANNs RA ANNs RA ANNs RA

1 22.22 30.58 13.87 18.12 9.78 21.04 6.44 12.75

2 21.98 29.96 12.99 21.88 28.83 16.67 25.10 12.25

3 22.71 27.80 14.92 20.04 13.97 28.79 9.82 18.18

4 21.75 26.71 15.18 17.49 16.01 29.89 11.05 19.38

5 21.85 29.91 12.83 22.11 15.02 15.88 10.51 14.65

6 21.09 27.51 11.55 20.25 14.98 16.10 11.01 14.57

7 20.38 29.43 11.67 21.56 13.05 15.35 10.29 14.28
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8 Conclusion

In this study, the ability of the artificial neural networks

(ANNs) model to estimate suspended sediment concen-

tration (SSC), for the first time, based on the water quality

(WQ) variables, namely total chromium (Cr) concentra-

tion, total iron (Fe) concentration, and nephelometric tur-

bidity, was investigated and justified in case of the stream

Harsit. The main conclusions that can be drawn in the

present study are as follows:

• This study proposes model 7 as a suitable ANN model

to efficiently estimate the SSC for the stream Harsit.

The purposed ANN model predicted the SSC better

than the regression models. The model including all of

the independent variables has a root mean square error

(RMSE) with 20.38 mg/L and a mean absolute error

(MAE) with 11.67 mg/L for testing set.

• Among RA models, model 7 (Eq. 9), which considers

all three WQ variables in the input vector, can be

suggested as a prediction tool for the SSC.

• Sensitivity analysis revealed that total Cr is a more

effective parameter on the SSC than total Fe and

turbidity.

• The ANNs model gave satisfactory prediction of the

SSC using the WQ variables. This may imply that it can

be a useful tool for the prediction of the SSC in Turkish

streams and rivers. Therefore, the ANNs model may

provide great convenience in water research and for

environmental managers.
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the stream Harşit (Turkey). In: 9th International congress on

advances in civil engineering, Trabzon, Turkey (full text in CD:

ACE2010-HYD-042)

30. Bayram A, Onsoy H, Akinci G, Bulut VN (2011) Variation of

total organic carbon content along the stream Harsit, Eastern

Black Sea Basin, Turkey. Environ Monit Assess 182:85–95

31. Bayram A, Onsoy H, Komurcu MI, Bulut VN (2012) Effects of

Torul dam on water quality in the stream Harsit NE Turkey.

Environ Earth Sci 65:713–723

32. Bayram A, Onsoy H, Bulut VN, Akinci G (2012) Influences of

urban wastewaters on the stream water quality: a case study from

Gumushane Province, Turkey. Environ Monit Assess. doi:10.1007/

s10661-012-2632-y

33. Bayram A (2011) A study on seasonal variation of the stream

Harsit water quality and estimation of the suspended sediment

concentration using artificial neural networks. PhD Thesis, Ka-

radeniz Technical University, Trabzon, Turkey (in Turkish with

English abstract)

34. APHA (1992) American Public Health Association. Standard

methods for the examination of water and wastewater, 18th edn.

Washington

35. Jogn YH, Lee CI (2004) Influence of geological condition on the

powder factor for tunnel blasting. Int J Rock Mech Min Sci

41:533–538

Neural Comput & Applic (2014) 24:1079–1087 1087

123

http://dx.doi.org/10.1007/s10661-012-2632-y
http://dx.doi.org/10.1007/s10661-012-2632-y

	Prediction of suspended sediment concentration from water quality variables
	Abstract
	Introduction
	Artificial neural network approach
	The study area
	Materials and methods
	Turbidity measurements
	Surface water sampling
	Determination of the SSC
	Determination of the total chromium and total iron

	SSC prediction
	Regression model
	ANN model

	Results and discussion
	Sensitivity analysis
	Conclusion
	Acknowledgments
	References


