Skip to main content
Log in

Discrete cuckoo search algorithm for the travelling salesman problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an improved and discrete version of the Cuckoo Search (CS) algorithm to solve the famous traveling salesman problem (TSP), an NP-hard combinatorial optimisation problem. CS is a metaheuristic search algorithm which was recently developed by Xin-She Yang and Suash Deb in 2009, inspired by the breeding behaviour of cuckoos. This new algorithm has proved to be very effective in solving continuous optimisation problems. We now extend and improve CS by reconstructing its population and introducing a new category of cuckoos so that it can solve combinatorial problems as well as continuous problems. The performance of the proposed discrete cuckoo search (DCS) is tested against a set of benchmarks of symmetric TSP from the well-known TSPLIB library. The results of the tests show that DCS is superior to some other metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Kader RF (2011) Fuzzy particle swarm optimization with simulated annealing and neighbourhood information communication for solving TSP. Int J Adv Comput Sci Appl 2(5):15–21

    Google Scholar 

  2. Arora S (1998) Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J ACM (JACM) 45(5):753–782

    Article  MATH  Google Scholar 

  3. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surveys (CSUR) 35(3):268–308

    Article  Google Scholar 

  4. Bonomi E, Lutton JL (1984) The n-city travelling salesman problem: statistical mechanics and the metropolis algorithm. SIAM Rev 26(4):551–568

    Google Scholar 

  5. Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in dobe ju/’hoansi foraging patterns. Hum Ecol 35(1):129–138

    Article  Google Scholar 

  6. Chen SM, Chien CY (2011) Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Syst Appl 38(12):14439–14450

    Google Scholar 

  7. Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812

    Google Scholar 

  8. Dorigo M, Gambardella LM et al (1997) Ant colonies for the travelling salesman problem. BioSystems 43(2):73–82

    Article  Google Scholar 

  9. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  10. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23–24):2325–2336

    Article  Google Scholar 

  11. Gandomi AH, Talatahari S, Yang XS, Deb S (2012) Design optimization of truss structures using cuckoo search algorithm. Struct Des Tall Special Build. doi:10.1002/tal.1033

  12. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  MathSciNet  Google Scholar 

  13. Geem ZW, Kim JH et al (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  14. Glover F, Kochenberger GA (2003) Handbook of metaheuristics. Springer, New York

    MATH  Google Scholar 

  15. Gutin G, Punnen AP (2002) The traveling salesman problem and its variations, vol 12. Springer, New York

    MATH  Google Scholar 

  16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural networks, 1995. Proceedings, IEEE international conference on, IEEE, vol4, pp 1942–1948

  17. Larranaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif Intell Rev 13(2):129–170

    Article  Google Scholar 

  18. Lawler EL, Lenstra JK, Kan AR, Shmoys DB (1985) The traveling salesman problem: a guided tour of combinatorial optimization, vol 3. Wiley, New York

    MATH  Google Scholar 

  19. Lenstra JK, Rinnooy Kan AHG (1975) Some simple applications of the travelling salesman problem. Oper Res Q 26(5): 717–733

    Google Scholar 

  20. Malek M, Guruswamy M, Pandya M, Owens H (1989) Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Ann Oper Res 21(1):59–84

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin O, Otto SW, Felten EW (1991) Large-step markov chains for the traveling salesman problem. Complex Syst 5(3):299–326

    MathSciNet  MATH  Google Scholar 

  22. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: Data mining, systems analysis, and optimization in biomedicine(AIP conference proceedings, vol 953), American Institute of Physics, 2 Huntington Quadrangle, Suite 1 NO 1, Melville, NY, 11747-4502, USA, vol 953, pp 162–173

  23. Payne RB, Sorenson MD (2005) The cuckoos, vol 15. Oxford University Press, USA

    Google Scholar 

  24. Reinelt G (1991) Tsplib—a traveling salesman problem library. ORSA J Comput 3(4):376–384

    Article  MATH  Google Scholar 

  25. Reinelt G (1994) The traveling salesman: computational solutions for TSP applications, vol 15. Springer, New York

    Google Scholar 

  26. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput 1(1):71–79

    Article  Google Scholar 

  27. Shi XH, Liang YC, Lee HP, Lu C, Wang QX (2007) Particle swarm optimization-based algorithms for tsp and generalized tsp. Inf Process Lett 103(5):169–176

    Article  MathSciNet  MATH  Google Scholar 

  28. Shlesinger MF, Zaslavsky GM, Frisch U (1995) Lévy flights and related topics in physics:(Nice, 27–30 June 1994). Springer, New York

    Book  Google Scholar 

  29. Taillard ED, Gambardella LM, Gendreau M, Potvin JY (2001) Adaptive memory programming: a unified view of metaheuristics. Eur J Oper Res 135(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  30. Teodorovic D, Lucic P, Markovic G, Orco MD (2006) Bee colony optimization: principles and applications. In: Neural network applications in electrical engineering, 2006. NEUREL 2006. 8th Seminar on, IEEE, pp 151–156

  31. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Evol Comput IEEE Trans 1(1):67–82

    Article  Google Scholar 

  32. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and application, SAGA 2009. Lecture notes in computer sciences, vol 5792, pp 169–178

  33. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010), pp 65–74

  34. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World congress on, IEEE, pp 210–214

  35. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Modell Numer Optim 1(4):330–343

    MATH  Google Scholar 

  36. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Ouaarab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouaarab, A., Ahiod, B. & Yang, XS. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput & Applic 24, 1659–1669 (2014). https://doi.org/10.1007/s00521-013-1402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1402-2

Keywords

Navigation