Skip to main content
Log in

Content-based image retrieval using extroverted semantics: a probabilistic approach

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel content-based image retrieval technique based on Gaussian mixture probability model. The proposed technique provides the solution toward matching arbitrary images based on color, shape and texture. Glyph structure of the image, which inclines on the shape and texture attributes, is modeled and used for content matching. Gaussian mixture model is applied to quantify the glyph structure in terms of its parameters. The formed probability density functions based on the glyph structure are refined using expectation maximization. Finally, the parameters yielded by the Gaussian mixture model allow us to perform comparison between arbitrary images based on their semantic details. It is concluded from the experimental results that relatively similar images have comparable parameters while the parameters of discordant images deviate with each other. In this way, for a certain arbitrary image, the set of resembling images is obtained from a large image base. In addition, the results show that this set is narrowed or broadened on the basis of a divergence ratio which marks the functional difference between the parameters of the images being compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(6):679–698

    Article  Google Scholar 

  2. Deriche R (1987) Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int J Comput Vis 1(2):167–187

    Article  Google Scholar 

  3. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  4. Hogg RV, McKean JW, Craig AT (2012) Introduction to mathematical statistics. Pearson Education (US), United States

  5. MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Bilmes JA (1998) A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, Berkeley

  7. Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 13(6):47–60

    Article  Google Scholar 

  8. Nasios N, Bors AG (2006) Variational learning for Gaussian mixture model. IEEE Trans Syst Man Cybern B 36(4):849–862

    Article  Google Scholar 

  9. Jamshidian M, Jennrich RI (1993) Conjugate gradient acceleration of the EM algorithm. J Am Stat Assoc 88(421):221–228

    MathSciNet  MATH  Google Scholar 

  10. Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, New York

    MATH  Google Scholar 

  11. McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  12. Lindsay BG (1995) Mixture models: theory, geometry and applications. IMS

  13. Everitt B, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  14. Foley JD (1996) Computer graphics: principles and practice. Addison-Wesley, Reading

    MATH  Google Scholar 

  15. Howard RA (2007) Dynamic probabilistic systems, vol. 1: Markov models. Wiley, New York

    Google Scholar 

  16. Kotoulas L, Andreadis I (2003) Colour histogram content-based image retrieval and hardware implementation. IEE Proc Circuits Devices Syst 150(5):387–393

    Article  Google Scholar 

  17. Krishnapuram R, Medasani S, Jung S-H, Choi Y-S, Balasubramaniam R (2004) Content based image retrieval based on a fuzzy approach. IEEE Trans Knowl Data Eng 16(10):1185–1199

    Article  Google Scholar 

  18. Jiang W, Er G, Dai Q, Gu J (2006) Similarity based online feature selection in content based image retrieval. IEEE Trans Image Process 15(3):702–712

    Article  Google Scholar 

  19. Rahmani R, Goldman SA, Zhang Hui, Choletti SR, Fritts JE (2008) Localized content-based image retrieval. IEEE Trans Pattern Anal Mach Intell 30(11):1902–1912

    Article  Google Scholar 

  20. Wu K, Yap K-H (2006) Fuzzy SVM for content based image retrieval: a pseudo-label support vector machine framework. IEEE Comput Intell Mag 1(2):10–16

    Article  Google Scholar 

  21. Tang HL, Hanka R, Ip HHS (2003) Histological image retrieval based on semantic content analysis. IEEE Trans Inf Technol Biomed 7(1):26–36

    Article  Google Scholar 

  22. Chun YD, Kim NC, Jang IH (2008) Content based image retrieval using multiresolution color and texture features. IEEE Trans Multimedia 10(6):1073–1084

    Article  Google Scholar 

  23. Marakakis A, Galatsanos N, Likas A, Stafylopatis A (2009) Probabilistic relevance feedback approach for content-based image retrieval based on Gaussian mixture models. IET Image Process 3(1):10–45

    Article  Google Scholar 

  24. Yap PT, Paramesran R (2006) Content based image retrieval using Legendre chromaticity distribution moments. IEE Proc Vis Image Signal Process 153(1):17–24

    Article  Google Scholar 

  25. Grigorova A, De Natalie FGB, Dagli C, Huang TS (2007) Content based image retrieval by feature adaptation and relevance feedback. IEEE Trans Multimedia 9(6):1183–1192

    Article  Google Scholar 

  26. Qiu G, Lam K-M (2003) Frequency layered color indexing for content based image retrieval. IEEE Trans Image Process 12(1):102–103

    Article  Google Scholar 

  27. Laaksonen J, Koskela M, Laakso S, Oja E (2000) PicSom—content based image retrieval with self-organizing maps. Pattern Recogn Lett 21(13–14):1199–1207

    Article  MATH  Google Scholar 

  28. Arias-Castro E, Donoho DL (2009) Does median filtering truly preserve edges better than linear filtering. Ann Stat 37(3):1172–1206

    Article  MathSciNet  MATH  Google Scholar 

  29. Arce GR (2005) Nonlinear signal processing: a statistical approach. Wiley, New Jersey

    Google Scholar 

  30. Lu HC, Tsai CH (2006) Image recognition study via the neural fuzzy system. In: Proc. int. conf. intelligent engineering systems INES ’06, pp 222–226

  31. Weber R, Mlivoncic M (2003) Efficient region-based image retrieval. In: Proceeding CIKM ’03 proceedings of the twelfth international conference on information and knowledge management. ACM, New York, NY, USA, pp 69–76

    Google Scholar 

  32. Deng Y, Manjunath BS, Shin H (1999) Color image segmentation, proceedings international conference of computer vision and pattern recognition. IEEE Comput Soc Conf 2:446–451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Daanial Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y.D., Ahmad, F. & Khan, S.A. Content-based image retrieval using extroverted semantics: a probabilistic approach. Neural Comput & Applic 24, 1735–1748 (2014). https://doi.org/10.1007/s00521-013-1410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1410-2

Keywords

Navigation