Skip to main content
Log in

Kernel linear regression for face recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Linear regression uses the least square algorithm to solve the solution of linear regression equation. Linear regression classification (LRC) shows good classification performance on face image data. However, when the axes of linear regression of class-specific samples have intersections, LRC could not well classify the samples that distribute around intersections. Moreover, the LRC could not perform well at the situation of severe lighting variations. This paper proposes a new classification method, kernel linear regression classification (KLRC), based on LRC and the kernel trick. KLRC is a nonlinear extension of LRC and can offset the drawback of LRC. KLRC implicitly maps the data into a high-dimensional kernel space by using the nonlinear mapping determined by a kernel function. Through this mapping, KLRC is able to make the data more linearly separable and can perform well for face recognition with varying lighting. For comparison, we conduct on three standard databases under some evaluation protocols. The proposed methodology not only outperforms LRC but also takes the better performance than typical kernel methods such as kernel linear discriminant analysis and kernel principal component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bowyer KW (2004) Face recognition technology: security versus privacy. IEEE Technol Soc Mag 23:9–19

    Article  Google Scholar 

  2. Jain AK, Ross A, Prabhaker S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14:4–20

    Article  Google Scholar 

  3. Luo J, Crandall D (2006) Color object detection using spatial-color joint probability functions. IEEE Trans Image Prcess 15:1443–1453

    Article  Google Scholar 

  4. Wang JH, You J, Li Q, Xu Y (2012) Extract minimum positive and maximum negative features for imbalanced binary classification. Pattern Recognit 45:1136–1145

    Article  Google Scholar 

  5. Xu Y, Zhang D, Yang J-Y (2010) A feature extraction method for use with bimodal biometrics. Pattern Recognit 43:1106–1115

    Article  MATH  Google Scholar 

  6. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21:1255–1262

    Article  Google Scholar 

  7. Cevikalp H, Neamtu M, Wilkes M, Barkana A (2005) Discriminative common vectors for face recognition. IEEE Trans Pattern Anal Mach Intell 27:4–13

    Article  Google Scholar 

  8. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32:2106–2112

    Article  Google Scholar 

  9. Fan ZZ, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22:1119–1132

    Article  Google Scholar 

  10. Xu Y, Zhang D, Jin Z, Li M, Yang J-Y (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognit 39:1026–1033

    Article  MATH  Google Scholar 

  11. Xu Y, Yang J-Y, Jin Z (2003) Theory analysis on FSLDA and ULDA. Pattern Recognit 36:3031–3033

    Article  MATH  Google Scholar 

  12. Xu D, Yan S, Zhang L, Lin S, Zhang H, Huang T (2008) Reconstruction and recognition of tensor-based objects with concurrent subspace analysis. IEEE Trans Circuits Syst Video Technol 18(1):36–47

    Article  Google Scholar 

  13. Xu Y, Zhong AN, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43:4165–4176

    Article  MATH  Google Scholar 

  14. Ching WK, Chu DL, Liao LZ, Wang XY (2012) Regularized orthogonal linear discriminant analysis. Pattern Recognit 45:2719–2732

    Article  MATH  Google Scholar 

  15. Lu G-F, Zou J, Wang Y (2012) Incremental complete LDA for face recognition. Pattern Recognit 45:2510–2521

    Article  MATH  Google Scholar 

  16. Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26:131–137

    Article  Google Scholar 

  17. Hotta K (2012) Local co-occurrence features in subspace obtained by KPCA of local blob visual words for scene classification. Pattern Recognit 45:3687–3694

    Article  Google Scholar 

  18. Xu Y, Zhang D, Yang J, Jin Z, Yang J-Y (2011) Evaluate dissimilarity of samples in feature space for improving KPCA. Int J Inf Technol Decis Mak 10:479–495

    Article  Google Scholar 

  19. Mika S, Ratsch G, Weston J (1999) Fisher Discriminant Analysis with Kernels. In: Proceedings of neural networks for signal processing workshop. pp 41–48

  20. Zheng W-S, Lai JH, Yuen PC (2010) Penalized preimage learning in kernel principal component analysis. IEEE Trans Neural Netw 21:551–570

    Article  Google Scholar 

  21. He R, Zheng W-S, Hu B-G (2011) Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell 33(8):1561–1576

    Article  Google Scholar 

  22. Kim MY (2013) Accelerated max-margin multiple kernel learning. Appl Intell 38:45–57

    Article  Google Scholar 

  23. Seber GAF (2003) Linear regression analysis. Wiley, New York

    Book  MATH  Google Scholar 

  24. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  25. Dhillon IS, Guan YQ, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. pp 551–557

  26. Scholkopf B, Smola AJ, Muller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  27. Fan J, Heckman NE, Wand MP (1995) Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J Am Stat Assoc 90:141–150

    Article  MathSciNet  MATH  Google Scholar 

  28. Nekoukar V, Hamidi Beheshti MT (2010) A local linear radial basis function neural network for financial time-series forecasting. Appl Intell 33:352–356

    Article  Google Scholar 

  29. Barsi R, Jacobs D (2003) Lambertian reflection and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25:218–233

    Article  Google Scholar 

  30. Diosan L, Rogozan A, Pecuchet JP (2012) Improving classification performance of support vector machine by genetically optimising kernel shape and hyper-parameters. Appl Intell 36:280–294

    Article  Google Scholar 

  31. Available: http://www.anefian.com/research/face_reco.htm

  32. Available: http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

  33. Martinez A, Benavente R (1998) The AR face database. CVC technical report 24

  34. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  35. Phillips PJ, Wechsler H, Huang JS, Rauss PJ (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16:295–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binglei Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Fang, X. & Xie, B. Kernel linear regression for face recognition. Neural Comput & Applic 24, 1843–1849 (2014). https://doi.org/10.1007/s00521-013-1435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1435-6

Keywords

Navigation