Skip to main content
Log in

Current–voltage modeling of graphene-based DNA sensor

  • ICONIP 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Graphene is considered as an excellent biosensing material due to its outstanding and unique electronic properties such as providing large area detection, ultra-high mobility and ambipolar field-effect characteristic. In this paper, general conductance model of DNA sensor-based graphene is obtained, and the electrical performance of nanostructured graphene-based DNA sensor is evaluated by the current–voltage characteristic. As a result, by increasing the complementary DNA concentration, the drain current is going toward higher amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453. doi:10.1073/pnas.0502848102

    Article  Google Scholar 

  2. Xie Y, Chen A, Du D, Lin Y (2011) Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal Chim Acta 699(1):44–48. doi:10.1016/j.aca.2011.05.010

    Article  Google Scholar 

  3. Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23(19):2221. doi:10.1002/adma.201100014

    Article  Google Scholar 

  4. Qiu Y, Qu X, Dong J, Ai S, Han R (2011) Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater 190(1–3):480–485. doi:10.1016/j.jhazmat.2011.03.071

    Article  Google Scholar 

  5. Bertini I, Lee YM, Luchinat C, Piccioli M, Poggi L (2001) Locating the metal ion in calcium-binding proteins by using cerium(III) as a probe. ChemBioChem 2(7–8):550–558. doi:10.1002/1439-7633(20010803)2:7/8<550:aid-cbic550>3.3.co;2-k

    Article  Google Scholar 

  6. Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett 9(9):3318–3322. doi:10.1021/nl901596m

    Article  Google Scholar 

  7. Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. doi:10.1039/c1an15610a

    Article  Google Scholar 

  8. Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v

    Article  Google Scholar 

  9. Baby TT, Aravind SSJ, Arockiadoss T, Rakhi RB, Ramaprabhu S (2010) Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor. Sens Actuators B Chem 145(1):71–77. doi:10.1016/j.snb.2009.11.022

    Article  Google Scholar 

  10. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  Google Scholar 

  11. Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590. doi:10.1021/nl072949q

    Article  Google Scholar 

  12. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342

    Article  Google Scholar 

  13. Nilsson J, Neto AHC, Guinea F, Peres NMR (2007) Transmission through a biased graphene bilayer barrier. Phys Rev B (Condens Matter Mater Phys) 76(16):165416

    Article  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  Google Scholar 

  15. Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20(18):3117–3124. doi:10.1002/adfm.201000724

    Article  Google Scholar 

  16. Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362. doi:10.1039/c1jm11436k

    Article  Google Scholar 

  17. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622

    Article  Google Scholar 

  18. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801

    Article  Google Scholar 

  19. Snow E, Perkins F, Houser E, Badescu S, Reinecke T (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717):1942

    Article  Google Scholar 

  20. Shi YB, Xiang JJ, Feng QH, Hu ZP, Zhang HQ, Guo JY (2006) Binary channel SAW mustard gas sensor based on PdPc(0.3)PANI(0.7)hybrid sensitive film. In: Tan J (ed) 4th International symposium on instrumentation science and technology, vol 48. J Phys Conf Ser. pp 292–297. doi:10.1088/1742-6596/48/l/054

  21. Shi Y, Dong X, Chen P, Wang J, Li LJ (2009) Effective doping of single-layer graphene from underlying SiO_ 2 substrates. Phys Rev B 79(11):115402

    Article  Google Scholar 

  22. Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8(1):173–177

    Article  Google Scholar 

  23. Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426

    Article  Google Scholar 

  24. Zhang K, Liu X (2011) One step synthesis and characterization of CdS nanorod/graphene nanosheet composite. Appl Surf Sci 257(24):10379–10383. doi:10.1016/j.apsusc.2011.06.087

    Article  Google Scholar 

  25. Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103(4):921

    Article  Google Scholar 

  26. Choi J, Choi WM, Hong BH Graphene used for device and graphene sheet, comprises etched edge portion comprising functional group of carbonyl, carboxy, hydroxy, formyl and/or oxycarbonyl. US2010178464-A1; KR2010083954-A

  27. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Article  Google Scholar 

  28. Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516

    Article  Google Scholar 

  29. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598

    Article  Google Scholar 

  30. Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25(10):2379–2383. doi:10.1016/j.bios.2010.03.009

    Article  Google Scholar 

  31. Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995. doi:10.1021/ac100036p

    Article  Google Scholar 

  32. Koochi A, Kazemi A, Abadyan M (2011) Simulating deflection and determining stable length of freestanding carbon nanotube probe/sensor in the vicinity of graphene layers using a nanoscale continuum model. Nano 6(5):419–429. doi:10.1142/s1793292011002731

    Article  Google Scholar 

  33. Chen F, Qing Q, Xia J, Tao N (2010) Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J 5(10):2144–2153. doi:10.1002/asia.201000252

    Article  Google Scholar 

  34. Sassolas A, Leca-Bouvier BD, Blum LJ (2007) DNA biosensors and microarrays. Chem Rev 108(1):109–139. doi:10.1021/cr0684467

    Article  Google Scholar 

  35. Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater :4 Pages

  36. Datta S (2002) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  37. Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12

    Article  Google Scholar 

  38. Peres NMR, Neto AHC, Guinea F (2006) Conductance quantization in mesoscopic graphene. Phys Rev B 73(19):195411–195419

    Article  Google Scholar 

  39. Gunlycke D, Areshkin D, White C (2007) Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett 90:142104

    Article  Google Scholar 

  40. Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Molecular doping of graphene. Nano Lett 8

  41. Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649. doi:10.1002/adma.200903645

    Article  Google Scholar 

  42. Passlack M (2008) III–V metal-oxide-semiconductor technology. 2008 IEEE 20th international conference on indium phosphide and related materials (Iprm):59–59

  43. Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New York

    Book  Google Scholar 

  44. Rahmani M, Ahmadi MT, HKF A, Kiani MJ, Akbari E, Ismail R (2013) Analytical modeling of monolayer graphene-based NO2 sensor. Sensor Lett 11:270–275

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial support from Research University grant of the Ministry of Higher Education of Malaysia (MOHE) under Project grant:MJIIT-4J010. Also thanks to the Research Management Center (RMC) of University Technology Malaysia (UTM) for providing an excellent research environment in which to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yusof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi Feiz Abadi, H., Yusof, R., Maryam Eshrati, S. et al. Current–voltage modeling of graphene-based DNA sensor. Neural Comput & Applic 24, 85–89 (2014). https://doi.org/10.1007/s00521-013-1464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1464-1

Keywords

Navigation