Skip to main content
Log in

Expanded HP memristor model and simulation in STDP learning

  • ICONIP 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Based on the classical HP memristor found by HP Lab, this paper presents an expanded model that making fully consideration of the influence of R on, that is, R on is the similar order of magnitude of R off. Simulations proved that in some particular conditions, the hysteresis effect of the expanded model is the same as HP memristor. A comparison was made between these two models under some given conditions. Then, we built several simulations to test the classical characteristics of the expanded HP memristor. Simulation results demonstrate that the expanded model is superior to the original in some aspects like easy switching and power saving. At last, we applied the expanded HP memristor in STDP learning simulation, which shows it is a good candidate for neural network when a threshold voltage function is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  3. Rozenberg MJ, Inoue IH, Sánchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302

    Article  Google Scholar 

  4. Jo SH, Lu W (2008) CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett 8:392–397

    Article  Google Scholar 

  5. Ho Y, Huang GM, Li P (2009) Nonvolatile memristor memory: device characteristics and design implications. In: 2009 IEEE/ACM international conference on computer-aided design digest of technical papers. ACM, New York, pp 485–490

  6. Biolek Z, Biolek D, Biolková V (2009) SPICE model of memristor with nonlinear dopant drift. Radioengineering 18:210–214

    Google Scholar 

  7. Snider G (2007) Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18:365202

    Article  Google Scholar 

  8. Biolek D, Biolek Z, Biolkova V (2010) SPICE modelling of memcapacitor. Electron Lett 46:520–522

    Article  Google Scholar 

  9. Pershin YV, Ventra MD (2010) Practical approach to programmable analog circuits with memristors. IEEE Trans Circuits Syst 57:1857–1864

    Article  Google Scholar 

  10. Batas D, Fiedler H (2011) A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans Nanotechnol 10:250–255

    Article  Google Scholar 

  11. Lin YJ, Hou CL, Su TJ (2009) Cellular neural networks for noise cancellation of gray image based on hybrid linear matrix inequality and particle swarm optimization. In: 2009 international conference on new trends in information and service science. IEEE, New York, pp 613–617

  12. Wen S, Zeng Z, Huang T (2012) Adaptive synchronization of memristor-based Chua’s circuits. Phys Lett A 376:2775–2780

    Article  Google Scholar 

  13. Wen S, Zeng Z, Huang T (2012) Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 97:233–240

    Article  Google Scholar 

  14. Wen S, Zeng Z (2012) Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli. Neural Process Lett 35:47–59

    Article  Google Scholar 

  15. Wen S, Zeng Z, Huang T (2012) Dynamic behaviors of memristor-based delayed recurrent networks. Neural Comput Appl. doi:10.1007/s00521-012-0998-y

    Google Scholar 

  16. Bao G, Zeng Z (2012) Multistability of periodic delayed recurrent neural network with memristors. Neural Comput Appl. doi:10.1007/s00521-012-0954-x

    Google Scholar 

  17. Jiang F, Yang H, Shen Y (2013) On the robustness of global exponential stability for hybrid neural networks with noise and delay perturbations. Neural Comput Appl. doi:10.1007/s00521-013-1374-2

    Google Scholar 

  18. Pershin YV, Ventra MD (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23:881–886

    Article  Google Scholar 

  19. Wang X, Li C, Huang T, Duan S (2013) Global exponential stability of a class of memristive neural networks with time-varying delays. Neural Comput Appl. doi:10.1007/s00521-013-1383-1

    Google Scholar 

  20. Wang G, Shen Y (2013) Exponential synchronization of coupled memristive neural networks with time delays. Neural Comput Appl. doi:10.1007/s00521-013-1349-3

    Google Scholar 

  21. Chen L, Li C, Wang X, Duan S (2013) Associate learning and correcting in a memristive neural network. Neural Comput Appl 22:1071–1076

    Article  Google Scholar 

  22. Wen S, Zeng Z, Huang T (2012) Associative learning of integrate-and-fire neurons with memristor-based synapses. Neural Process Lett. doi:10.1007/s11063-012-9263-8

    Google Scholar 

  23. Wu A, Zeng Z, Chen J (2013) Analysis and design of winner-take-all behavior based on a novel memristive neural network. Neural Comput Appl. doi:10.1007/s00521-013-1395-x

    Google Scholar 

  24. Snider G (2011) Instar and outstar learning with memristive nanodevices. Nanotechnology 22:015201

    Article  Google Scholar 

  25. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

  26. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64:209–223

    Article  MathSciNet  Google Scholar 

  27. Snider G (2008) Spike-timing-dependent learning in memristive nanodevices. IEEE Int Symp Nano Archit. doi:10.1109/NANOARCH.2008.4585796

  28. Linares-Barranco B, Serrano-Gotarredona T (2009) Memristance can explain spike-time-dependent-plasticity in neural synapses. Nat Prec. http://hdl.handle.net/10101/npre.2009.3010.1

  29. Gerstner W, Ritz R, Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503–515

    MATH  Google Scholar 

  30. Cantley KD, Subramaniam A, Stiegler HJ, Chapman RA, Vogel EM (2011) Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses. IEEE Trans Nanotechnol 10:1066–1073

    Article  Google Scholar 

  31. Ebong I, Deshpande D, Yilmaz Y, Mazumder P (2011) Multi-purpose neuro-architecture with memristors. In: 2011 IEEE international conference on nanotechnology. IEEE, New York, pp 431–435

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, Y., Li, C. & Wang, H. Expanded HP memristor model and simulation in STDP learning. Neural Comput & Applic 24, 51–57 (2014). https://doi.org/10.1007/s00521-013-1467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1467-y

Keywords

Navigation