
ar
X

iv
:1

31
2.

56
67

v1
 [

m
at

h.
O

C
]

 1
9

D
ec

 2
01

3 A Framework for Self-Tuning Optimization Algorithm

Xin-She Yang1, Suash Deb, Martin Loomes1, Mehmet Karamanoglu1

1) School of Science and Technology, Middlesex University, London NW4 4BT, UK.

2) Cambridge Institute of Technology, Cambridge Village, Tatisilwai, India.

Abstract

The performance of any algorithm will largely depend on the setting of its algorithm-
dependent parameters. The optimal setting should allow the algorithm to achieve
the best performance for solving a range of optimization problems. However, such
parameter-tuning itself is a tough optimization problem. In this paper, we present a
framework for self-tuning algorithms so that an algorithm to be tuned can be used to
tune the algorithm itself. Using the firefly algorithm as an example, we show that this
framework works well. It is also found that different parameters may have different
sensitivities, and thus require different degrees of tuning. Parameters with high sensi-
tivities require fine-tuning to achieve optimality.

Keywords: Algorithm, firefly algorithm, parameter tuning, optimization, meta-
heuristic, nature-inspired algorithm.

Citation Details: X. S. Yang, S. Deb, M. Loomes, M. Karamanoglu, A framework for
self-tuning optimization algorithms, Neural Computing and Applications, Vol. 23, No. 7-8,
pp. 2051-2057 (2013).

1 Introduction

Optimization is paramount in many applications such as engineering and industrial designs.
Obviously, the aims of optimization can be anything – to minimize the energy consumption,
to maximize the profit, output, performance and efficiency [14, 9, 13, 17]. As most real-world
applications are often highly nonlinear, it requires sophisticated optimization tools to tackle.
There are many algorithms that use swarm intelligence to solve optimization problems, and
algorithms such as particle swarm optimization, cuckoo search and firefly algorithm have
received a lot of interests. These nature-inspired algorithms have been proved very efficient.

Metaheuristic algorithms are often nature-inspired, and they are now among the most
widely used algorithms for optimization. They have many advantages over conventional
algorithms [9, 13, 5]. Metaheuristic algorithms are very diverse, including genetic algo-
rithms, simulated annealing, differential evolution, ant and bee algorithms, bat algorithm,
particle swarm optimization, harmony search, firefly algorithm, cuckoo search and others
[8, 15, 18, 6].

Since all algorithms have algorithm-dependent parameters, the performance of an algo-
rithm largely depends on the values or setting of these parameters. Ideally, there should
be a good way to tune these parameters so that the performance of the algorithm can be

http://arxiv.org/abs/1312.5667v1

optimal in the sense that the algorithm can find the optimal solution of a problem using
the minimal number of iterations and with the highest accuracy. However, such tuning of
algorithm-dependent parameters is itself a very tough optimization problem. In essence, it
is a hyper-optimization problem, that is the optimization of optimization. In fact, how to
find the best parameter setting of an algorithm is still an open problem.

There are studies on parameter tuning. For example, Eiben provided a comprehensive
summary of existing studies [3]. However, these studies are still very preliminary. There is
no method of self-tuning in algorithms. Therefore, the main objective of this paper is to
provide a framework for self-tuning algorithms so that an algorithm can be used to tune
its own parameters automatically. As far as we are concerned, this is the first of its kind
in parameter tuning. The paper is thus organized as follows: Section 2 first analyzes the
essence of parameter tuning and Section 3 provides a framework for automatic parameter
tuning. Section 4 uses the firefly algorithm to show how the self-tuning framework works.
Then, Section 5 presents a case study of a gearbox design problem to further test the tuning
procedure. Finally, we draw conclusions briefly in Section 6.

2 Algorithm Analysis and Parameter Tuning

An optimization algorithm is essentially an iterative procedure, starting with some initial
guess point/solution with an aim to reach a better solution or ideally the optimal solu-
tion to a problem of interest. This process of search for optimality is generic, though the
details of the process can vary from algorithm to algorithm. Traditional algorithms such
as Newton-Raphson methods use a deterministic trajectory-based method, while modern
nature-inspired algorithms often are population-based algorithms that use multiple agents.
In essence, these multiple agents form an iterative, dynamic system which should have some
attractors or stable states. On the other hand, the same system can be considered as a set
of Markov chains so that they will converge towards some stable probability distribution.

2.1 An Optimization Algorithm

Whatever the perspective may be, the aim of such an iterative process is to let the evolve
system and converge into some stable optimality. In this case, it has strong similarity to
a self-organizing system. Such an iterative, self-organizing system can evolve, according to
a set of rules or mathematical equations. As a result, such a complex system can interact
and self-organize into certain converged states, showing some emergent characteristics of
self-organization. In this sense, the proper design of an efficient optimization algorithm is
equivalent to finding efficient ways to mimic the evolution of a self-organizing system [1, 7].

From a mathematical point of view, an algorithm A tends to generate a new and better
solution xt+1 to a given problem from the current solution xt at iteration or time t. For
example, the Newton-Raphson method to find the optimal solution of f(x) is equivalent to
finding the critical points or roots of f ′(x) = 0 in a d-dimensional space. That is,

xt+1 = xt −
f ′(xt)

f ′′(xt)
= A(xt). (1)

Obviously, the convergence rate may become very slow near the optimal point where
f ′(x) → 0. In general, this Newton-Raphson method has a quadratic convergence rate
[12]. Sometimes, the true convergence rate may not be as quick as it should be, it may have

non-quadratic convergence property. A way to improve the convergence in this case is to
modify the above formula slightly by introducing a parameter p so that

xt+1 = xt − p
f ′(xt)

f ′′(xt)
. (2)

If the optimal solution, i.e., the fixed point of the iterations [11], is x∗, then we can take p

as

p =
1

1−A′(x∗)
. (3)

The above iterative equation can be written as

xt+1 = A(xt, p). (4)

It is worth pointing out that the optimal convergence of Newton-Raphson’s method leads to
an optimal parameter setting p which depends on the iterative formula and the optimality
x∗ of the objective f(x) to be optimized.

This above formula is valid for a deterministic method; however, in modern metaheuristic
algorithms, randomization is often used in an algorithm, and in many cases, randomization
appears in the form of a set of m random variables ε = (ε1, ..., εm) in an algorithm. For
example, in simulated annealing, there is one random variable, while in particle swarm
optimization [8], there are two random variables. In addition, there are often a set of
k parameters in an algorithm. For example, in particle swarm optimization, there are
4 parameters (two learning parameters, one inertia weight, and the population size). In
general, we can have a vector of parameters p = (p1, ..., pk). Mathematically speaking, we
can write an algorithm with k parameters and m random variables as

xt+1 = A
(

xt,p(t), ε(t)
)

, (5)

where A is a nonlinear mapping from a given solution (a d-dimensional vector xt) to a new
solution vector xt+1.

2.2 Type of Optimality

Representation (5) gives rise to two types of optimality: optimality of a problem and op-
timality of an algorithm. For an optimization problem such as min f(x), there is a global
optimal solution whatever the algorithmic tool we may use to find this optimality. This is
the optimality for the optimization problem. On the other hand, for a given problem Φ with
an objective function f(x), there are many algorithms that can solve it. Some algorithms
may require less computational effort than others. There may be the best algorithm with
the least computing cost, though this may not be unique. However, this is not our concern
here. Once we have chosen an algorithm A to solve a problem Φ, there is an optimal param-
eter setting for this algorithm so that it can achieve the best performance. This optimality
depends on both the algorithm itself and the problem it solves. In the rest of this paper,
we will focus on this type of optimality.

That is, the optimality to be achieved is

Maximize the performance of ξ = A(Φ,p, ε), (6)

for a given problem Φ and a chosen algorithm A(.,p, ε). We will denote this optimality as
ξ∗ = A∗(Φ,p∗

) = ξ(Φ,p
∗
) where p

∗
is the optimal parameter setting for this algorithm so

that its performance is the best. Here, we have used a fact that ε is a random vector can
be drawn from some known probability distributions, thus the randomness vector should
not be related to the algorithm optimality.

It is worth pointing out that there is another potential optimality. That is, for a given
problem, a chosen algorithm with the best parameter setting p

∗
, we can still use different

random numbers drawn from various probability distributions and even chaotic maps, so
that the performance can achieve even better performance. Strictly speaking, if an algorithm
A(., ., ε) has a random vector ε that is drawn from a uniform distribution ε1 ∼ U(0, 1)
or from a Gaussian ε2 ∼ N(0, 1), it becomes two algorithms A1 = A(., ., ε1) and A2 =
A(., ., ε2). Technically speaking, we should treat them as different algorithms. Since our
emphasis here is about parameter tuning so as to find the optimal setting of parameters,
we will omit effect of the randomness vector, and thus focus on

Maximize ξ = A(Φ,p). (7)

In essence, tuning algorithm involves in tuning its algorithm-dependent parameters. There-
fore, parameter tuning is equivalent to algorithm tuning in the present context.

2.3 Parameter Tuning

In order to tune A(Φ,p) so as to achieve its best performance, a parameter-tuning tool, i.e.,
a tuner, is needed. Like tuning a high-precision machinery, sophisticated tools are required.
For tuning parameters in an algorithm, what tool can we use? One way is to use a better,
existing tool (say, algorithm B) to tune an algorithm A. Now the question may become:
how do you know B is better? Is B well-tuned? If yes, how do you tune B in the first
place? Naively, if we say, we use another tool (say, algorithm C) to tune B. Now again the
question becomes how algorithm C has been tuned? This can go on and on, until the end
of a long chain, say, algorithm Q. In the end, we need some tool/algorithm to tune this Q,
which again come back to the original question: how to tune an algorithm A so that it can
perform best.

It is worth pointing out that even if we have good tools to tune an algorithm, the best
parameter setting and thus performance all depend on the performance measures used in
the tuning. Ideally, the parameters should be robust enough to minor parameter changes,
random seeds, and even problem instance [3]. However, in practice, they may not be
achievable. According to Eiben [3], parameter tuning can be divided into iterative and
non-iterative tuners, single-stage and multi-stage tuners. The meaning of these terminolo-
gies is self-explanatory. In terms of the actual tuning methods, existing methods include
sampling methods, screening methods, model-based methods, and metaheuristic methods.
Their success and effectiveness can vary, and thus there are no well-established methods for
universal parameter tuning.

3 Framework for Self-Tuning Algorithms

3.1 Hyper-optimization

From our earlier observations and discussions, it is clear that parameter tuning is the process
of optimizing the optimization algorithm, therefore, it is a hyper-optimization problem. In
essence, a tuner is a meta-optimization tool for tuning algorithms.

For a standard unconstrained optimization problem, the aim is to find the global mini-
mum f∗ of a function f(x) in a d-dimensional space. That is,

Minimize f(x), x = (x1, x2, ..., xd). (8)

Once we choose an algorithm A to solve this optimization problem, the algorithm will find
a minimum solution fmin which may be close to the true global minimum f∗. For a given
tolerance δ, this may requires tδ iterations to achieve |fmin − f∗| ≤ δ. Obviously, the actual
tδ will largely depend on both the problem objective f(x) and the parameters p of the
algorithm used.

The main aim of algorithm-tuning is to find the best parameter setting p
∗
so that the

computational cost or the number of iterations tδ is the minimum. Thus, parameter tuning
as a hyper-optimization problem can be written as

Minimize tδ = A(f(x),p), (9)

whose optimality is p
∗
.

Ideally, the parameter vector p
∗
should be sufficiently robust. For different types of

problems, any slight variation in p
∗
should not affect the performance of A much, which

means that p
∗
should lie in a flat range, rather than at a sharp peak in the parameter

landscape.

3.2 Multi-Objective View

If we look the algorithm tuning process from a different perspective, it is possible to con-
struct it as a multi-objective optimization problem with two objectives: one objective f(x)
for the problem Φ and one objective tδ for the algorithm. That is

Minimize f(x) and Minimize tδ = A(f(x),p), (10)

where tδ is the (average) number of iterations needed to achieve a given tolerance δ so
that the found minimum fmin is close enough to the true global minimum f∗, satisfying
|fmin − f∗| ≤ δ.

This means that for a given tolerance δ, there will be a set of best parameter settings
with a minimum tδ. As a result, the bi-objectives will form a Pareto front. In principle, this
bi-objective optimization problem (10) can be solved by any methods that are suitable for
multiobjective optimization. But as δ is usually given, a natural way to solve this problem
is to use the so-called ǫ-constraint or δ-constraint methods. The naming may be dependent
on the notations; however, we will use δ-constraints.

For a given δ ≥ 0, we change one of the objectives (i.e., f(x)) into a constraint, and thus
the above problem (10) becomes a single-objective optimization problem with a constraint.
That is

Minimize tδ = A(f(x),p), (11)

subject to
f(x) ≤ δ. (12)

In the rest of this paper, we will set δ = 10−5.
The important thing is that we still need an algorithm to solve this optimization problem.

However, the main difference from a common single objective problem is that the present
problem contains an algorithm A. Ideally, an algorithm should be independent of the

Implement an algorithm A(.,p, ε) with p = [p1, ..., pK], ε = [ε1, ..., εm];
Define a tolerance (e.g., δ = 10−5);

Algorithm objective tδ(f(x),p, ε);
Problem objective function f(x);
Find the optimality solution fmin within δ;
Output the number of iterations tδ needed to find fmin;

Solve min tδ(f(x),p) using A(.,p, ε) to get the best parameters;
Output the tuned algorithm with the best parameter setting p

∗
.

Figure 1: A Framework for a Self-Tuning Algorithm.

problem, which treats the objective to be solved as a black box. Thus we have A(.,p, ε),
however, in reality, an algorithm will be used to solve a particular problem Φ with an
objective f(x). Therefore, both notations A(.,p) and A(f(x),p) will be used in this paper.

3.3 Self-Tuning Framework

In principle, we can solve (11) by any efficient or well-tuned algorithm. Now a natural ques-
tion is: Can we solve this algorithm-tuning problem by the algorithm A itself? There is no
reason we cannot. In fact, if we solve (11) by using A, we have a self-tuning algorithm. That
is, the algorithm automatically tunes itself for a given problem objective to be optimized.
This essentially provides a framework for a self-tuning algorithm as shown in Fig. 1.

This framework is generic in the sense that any algorithm can be tuned this way, and
any problem can be solved within this framework. This essentially achieves two goals
simultaneously: parameter tuning and optimality finding.

In the rest of this paper, we will use firefly algorithm (FA) as a case study to self-tune
FA for a set of function optimization problems.

4 Self-Tuning Firefly Algorithm

4.1 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang in 2008 [14, 15, 16], which was
based on the flashing patterns and behaviour of tropical fireflies. In essence, FA uses the
following three idealized rules:

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless of
their sex.

• The attractiveness is proportional to the brightness and they both decrease as their
distance increases. Thus for any two flashing fireflies, the less brighter one will move
towards the brighter one. If there is no brighter one than a particular firefly, it will
move randomly.

• The brightness of a firefly is determined by the landscape of the objective function.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies,
we can now define the variation of attractiveness β with the distance r by

β = β0e
−γr2 , (13)

where β0 is the attractiveness at r = 0.
The movement of a firefly i is attracted to another more attractive (brighter) firefly j is

determined by

xt+1
i = xt

i + β0e
−γr2

ij (xt
j − xt

i) + α ǫti, (14)

where the second term is due to the attraction. The third term is randomization with α

being the randomization parameter, and ǫti is a vector of random numbers drawn from a
Gaussian distribution at time t. Other studies also use the randomization in terms of ǫti
that can easily be extended to other distributions such as Lévy flights [15, 16].

For simplicity for parameter tuning, we assume that β0 = 1, and therefore the two
parameters to be tuned are: γ > 0 and α > 0. It is worth pointing out that γ controls
the scaling, while α controls the randomness. For this algorithm to convergence properly,
randomness should be gradually reduced, and one way to achieve such randomness reduction
is to use

α = α0θ
t, θ ∈ (0, 1), (15)

where t is the index of iterations/generations. Here α0 is the initial randomness factor, and
we can set α0 = 1 without losing generality. Therefore, the two parameters to be tuned
become γ and θ.

4.2 Tuning the Firefly Algorithm

Now we will use the framework outlined earlier in this paper to tune FA for a set of five
test functions. The Ackley function can be written as

f1(x) = −20 exp
[

−
1

5

√

√

√

√

1

d

d
∑

i=1

x2i

]

− exp
[1

d

d
∑

i=1

cos(2πxi)
]

+ 20 + e, (16)

which has a global minimum f∗ = 0 at (0, 0, ..., 0).
The simplest of De Jong’s functions is the so-called sphere function

f2(x) =
d
∑

i=1

x2i , −5.12 ≤ xi ≤ 5.12, (17)

whose global minimum is obviously f∗ = 0 at (0, 0, ..., 0). This function is unimodal and
convex.

Yang’s forest function [16]

f3(x) =
(

d
∑

i=1

|xi|
)

exp
[

−
d

∑

i=1

sin(x2i)
]

, −2π ≤ xi ≤ 2π, (18)

is highly multimodal and has a global minimum f∗ = 0 at (0, 0, ..., 0).
Rastrigin’s function

f4(x) = 10d+
d

∑

i=1

[

x2i − 10 cos(2πxi)
]

, −5.12 ≤ xi ≤ 5.12, (19)

Table 1: Results of parameter tuning for the firefly algorithm.
Function Mean tδ ± σt Mean γ ± σγ Mean θ ± σθ
f1 589.7 ± 182.1 0.5344 ± 0.2926 0.9561 ± 0.0076

f2 514.4 ± 178.5 0.5985 ± 0.2554 0.9540 ± 0.0072

f3 958.1 ± 339.0 1.0229 ± 0.5762 0.9749 ± 0.0047

f4 724.1 ± 217.6 0.4684 ± 0.3064 0.9652 ± 0.0065

f5 957.2 ± 563.6 0.8933 ± 0.4251 0.9742 ± 0.0052

whose global minimum is f∗ = 0 at (0, 0, ..., 0). This function is highly multimodal.

Zakharov’s function [13]

f5(x) =
d
∑

i=1

x2i +
(1

2

d
∑

i=1

ixi

)2

+
(1

2

d
∑

i=1

ixi

)4

, (20)

has a global minimum f∗ = 0 at (0, 0, ..., 0).
For each objective function, we run the FA to tune itself 50 times so as to calculated

meaningful statistics. The population size n = 20 is used for all the runs. The means and
standard deviations are summarized in Table 1 where d = 8 is used for all functions.

From this table, we can see that the variations of γ is large, while θ has a narrow range.
The best settings for parameters are problem-dependent. These results imply the following:

• The optimal setting of parameters in an algorithm largely depends on the problem,
and there is no unique best setting for all problems.

• The relatively large standard deviation of γ means that the actual setting of γ is not
important to a given problem, and therefore, there is no need to fine tune γ. That is
to say, a typical value of γ = 1 should work for most problems.

• Some parameters are more sensitive than others. In the present case, θ needs more
fine-tuning, due to its smaller standard deviations.

These findings confirm the earlier observations in the literature that γ = O(1) can be
used for most applications [14, 15], while α needs to reduce gradually in terms of θ. That
is probably why other forms of probability distributions such as Lévy flights may lead to
better performance then the random numbers drawn from the Gaussian normal distribution
[16].

5 Applications

From the results for the test functions, we know that the tuning of γ is not important, while
θ needs more fine-tuning. Let us see if this conclusion is true for a real-world application.
In the rest of the paper, let us focus on a gearbox design problem.

The optimal design of a speed reducer or a gearbox is a well-known design benchmark
with seven design variables [2, 5], including the face width (b), module of the teeth (h), the
number of teeth on pinion (z), the length (L1) of the first shaft between bearing, the length
(L2) of the second shaft between between bearings, the diameter (d1) of the first shaft, and

the diameter (d2) of the second shaft. The main objective is to minimize the total weight of
the speed reducer, subject to 11 constraints such as bending stress, deflection and various
limits on stresses in shafts. This optimization problem can be written as

f(b, h, z, L1, L2, d1, d2) = 0.7854bh2(3.3333z2 + 14.9334z − 43.0934)

− 1.508b(d21 + d22) + 7.4777(d31 + d32) + 0.7854(L1d
2
1 + L2d

2
2), (21)

subject to

g1 =
27

bh2z
− 1 ≤ 0, g2 =

397.5
bh2z2

− 1 ≤ 0,

g3 =
1.93L3

1

hzd4
1

− 1 ≤ 0, g4 =
1.93L3

2

hzd4
2

− 1 ≤ 0,

g5 =
1

110d3
1

√

(745L1

hz
)2 + 16.9 × 106 − 1 ≤ 0,

g6 =
1

85d3
2

√

(745L2

hz
)2 + 157.5 × 106 − 1 ≤ 0,

g7 =
hz
40

− 1 ≤ 0, g8 =
5h
b
− 1 ≤ 0,

g9 =
b

12h
− 1 ≤ 0, g10 =

1.5d1+1.9
L1

− 1 ≤ 0,

g11 =
1.1d2+1.9

L2
− 1 ≤ 0.

(22)

In addition, the simple bounds are 2.6 ≤ b ≤ 3.6, 0.7 ≤ h ≤ 0.8, 17 ≤ z ≤ 28, 7.3 ≤ L1 ≤ 8.3,
7.8 ≤ L2 ≤ 8.3, 2.9 ≤ d1 ≤ 3.9, and 5.0 ≤ d2 ≤ 5.5. z must be integers.

By using the self-tuning framework via the firefly algorithm with n = 20, the following
best solutions have been obtained:

b = 3.5, h = 0.7, z = 17, L1 = 7.3, L2 = 7.8,

d1 = 3.34336445, d2 = 5.285350625, fmin = 2993.7495888, (23)

which are better than f∗ = 2996.348165 obtained by others [2, 5].
The best parameters obtained after tuning are γ = 1.0279 ± 0.4937 and θ = 0.9812 ±

0.0071, which are indeed consistent with the results in Table 1.

6 Discussion

Parameter tuning is the process of tuning an algorithm to find the best parameter settings
so that an algorithm can perform the best for a given set of problems. However, such
parameter tuning is a very tough optimization problem. In fact, such hyper-optimization
is the optimization of an optimization algorithm, which requires special care because the
optimality depends on both the algorithm to be tuned and the problem to be solved. Though
it is possible to view this parameter-tuning process as a bi-objective optimization problem;
however, the objectives involve an algorithm and thus this bi-objective problem is different
from the multiobjective problem in the normal sense.

In this paper, we have successfully developed a framework for self-tuning algorithms in
the sense that the algorithm to be tuned is used to tune itself. We have used the firefly

algorithm and a set of test functions to test the proposed self-tuning algorithm framework.
Results have shown that it can indeed work well. We also found that some parameters
require fine-tuning, while others do not need to be tuned carefully. This is because different
parameters may have different sensitivities, and thus may affect the performance of an
algorithm in different ways. Only parameters with high sensitivities need careful tuning.

Though successful, the present framework requires further extensive testing with a va-
riety of test functions and many different algorithms. It may also be possible to see how
probability distributions can affect the tuned parameters and even the parameter tuning
process. In addition, it can be expected that this present framework is also useful for pa-
rameter control, so a more generalized framework for both parameter tuning and control
can be used for a wide range of applications. Furthermore, our current framework may be
extended to multiobjective problems so that algorithms for multiobjective optimization can
be tuned in a similar way.

References

[1] Ashby, W. R. (1962). Princinples of the self-organizing sysem, in: Pricinples of Self-

Organization: Transactions of the University of Illinois Symposium (Eds H. Von Fo-
erster and G. W. Zopf, Jr.), Pergamon Press, London, UK. pp. 255–278.

[2] Cagnina L. C., Esquivel S. C., and Coello C. A., (2008). Solving engineering optimiza-
tion problems with the simple constrained particle swarm optimizer, Informatica, 32,
319–326.

[3] Eiben A. E. and Smit S. K., (2011). Parameter tuning for configuring and analyzing
evolutionary algorithms, Swarm and Evolutionary Computation, 1, pp. 19–31.

[4] Fister I., Fister Jr I., Yang X. S., Brest J., A comprehensive re-
view of firefly algorithms, Swarm and Evolutionary Computation, (2013).
http://dx.doi.org/10.1016/j.swevo.2013.06.001

[5] Gandomi, A.H., Yang, X.S. and Alavi, A.H. (2013). Cuckoo search algorithm: a
meteheuristic approach to solve structural optimization problems, Engineering with

Computers, 29(1), pp. 17–35 (2013).

[6] Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S. (2012). Coupled eagle strategy and
differential evolution for unconstrained and constrained global optimization, Comput-

ers & Mathematics with Applications, 63(1), 191–200.

[7] Keller, E. F. (2009). Organisms, machines, and thunderstorms: a history of self-
organization, part two. Complexity, emergenece, and stable attractors, Historical

Studies in the Natural Sciences, 39(1), 1–31.

[8] Kennedy, J. and Eberhart, R.C. (1995). Particle swarm optimization, in: Proc. of

IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948.

[9] Koziel, S. and Yang, X. S., (2011). Computational Optimization, Methods and Algo-

rithms, Springer, Germany.

[10] Pavlyukevich I. (2007). Lévy flights, non-local search and simulated annealing, J.

Computational Physics, 226, 1830–1844.

http://dx.doi.org/10.1016/j.swevo.2013.06.001

[11] Süli E. and Mayer D., (2003). An Inroduction to Numerical Analysis, Cambridge
University Press, Cambridge.

[12] Yang X. S., Introduction to Computational Mathematics, World Scientific Publishing
Ltd, Singapore.

[13] Yang X. S., (2010). Engineering Optimisation: An Introduction with Metaheuristic

Applications, John Wiley and Sons.

[14] Yang X. S., (2008). Nature-Inspired Metaheuristic Algorithms, First Edition, Luniver
Press, UK.

[15] Yang X. S., (2009). Firefly algorithms for multimodal optimization, in: Stochastic
Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer
Sciences, Vol. 5792, 169–178.

[16] Yang X.-S., (2010). Firefly algorithm, stochastic test functions and design optimisa-
tion, Int. J. Bio-inspired Computation, 2(2), 78–84.

[17] Yang, X. S., Deb, S., and Fong, S., (2011). Accelerated particle swarm optimization
and support vector machine for business optimization and applications, in: Networked
Digital Technologies 2011, Communications in Computer and Information Science,
136, pp. 53–66.

[18] Yang, X. S., Gandomi, A. H., (2012). Bat algorithm: a novel approach for global
engineering optimization, Engineering Computations, 29(5), 1–18.

[19] Yang, X. S. and Deb, S., (2009). Cuckoo search via Lévy flights, Proceeings of World

Congress on Nature & Biologically Inspired Computing (NaBIC 2009), IEEE Publi-
cations, USA, pp. 210–214.

[20] Yang X. S. and Deb S., (2010). Engineering optimization by cuckoo search, Int. J.
Math. Modelling Num. Opt., 1 (4), 330–343 (2010).

[21] Yang, X.S. and Deb, S. (2013). Multiobjective cuckoo search for design optimization,
Computers and Operations Research, 40(6), 1616–1624 (2013).

0 200 400 600 800 1000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iterations

D

GA
PSO
FPA

	1 Introduction
	2 Algorithm Analysis and Parameter Tuning
	2.1 An Optimization Algorithm
	2.2 Type of Optimality
	2.3 Parameter Tuning

	3 Framework for Self-Tuning Algorithms
	3.1 Hyper-optimization
	3.2 Multi-Objective View
	3.3 Self-Tuning Framework

	4 Self-Tuning Firefly Algorithm
	4.1 Firefly Algorithm
	4.2 Tuning the Firefly Algorithm

	5 Applications
	6 Discussion

