Skip to main content
Log in

Learning the optimal parameter of the Hamacher t-norm applied for fuzzy-rule-based model extraction

  • ICONIP 2012
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Mamdani-type inference systems with trapezoidal-shaped fuzzy membership functions play a crucial role in a wide variety of engineering systems, including real-time control, transportation and logistics, network management, etc. The automatic identification or construction of such fuzzy systems input output data is one of the key problems in modeling. In the past years, the authors have investigated several different fuzzy t-norms, among others, algebraic and trigonometric ones, and the Hamacher product by substituting the standard “min” t-norm operation, in order to achieve better model fitting. In the present paper, the focus is on examining the general parametric Hamacher t-norm, where the free parameter quite essentially influences the quality of modeling and the learning capability of the model identification system. Based on a wide scope of simulation experiments, a quasi-optimal interval for the value of the Hamacher operator is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems. IEEE Trans Syst Man Cybern SMC-1:28–44

    Article  MathSciNet  Google Scholar 

  2. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man–Mach Stud 7:1–13

    Article  MATH  Google Scholar 

  3. Kóczy LT (1995) Algorithmic aspects of fuzzy control. Int J Approx Reason—IJAR 12(3–4):159–219

    Article  MATH  Google Scholar 

  4. Nawa NE, Hashiyama T, Furuhashi T, Uchikawa Y (1997) A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator. In: Proceedings of the IEEE international conference on evolutionary computation (ICEC ‘97), pp 589–593

  5. Nawa NE, Furuhashi T (1999) Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans Fuzzy Syst 7:608–616

    Article  Google Scholar 

  6. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    MATH  MathSciNet  Google Scholar 

  7. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  8. Botzheim J, Cabrita C, Kóczy LT, Ruano AE (2005) Fuzzy rule extraction by bacterial memetic algorithm. In: Proceedings of the IFSA 2005, Beijing, China, pp 1563–1568

  9. Botzheim J, Cabrita C, Kóczy LT, Ruano AE (2004) Estimating fuzzy membership functions parameters by the Levenberg–Marquardt algorithm. In: Proceedings of the FUZZ-IEEE 2004, Budapest, Hungary, pp 1667–1672

  10. Gál L, Botzheim J, Kóczy LT (2008) Improvements to the bacterial memetic algorithm used for fuzzy rule base extraction. In: Proceedings of the computational intelligence for measurement systems and applications, CIMSA 2008, Istanbul, Turkey, pp 38–43

  11. Gál L, Botzheim J, Kóczy LT (2008) Modified bacterial memetic algorithm used for fuzzy rule base extraction. In: Proceedings of the 5th international conference on soft computing as transdisciplinary science and technology (CSTST 2008), Paris, France, pp 425–431

  12. Gál L, Kóczy LT (2011) Fuzzy rule base extraction by bacterial type algorithms using selected t-norms. Acta Technica Jaurinensis Series Intelligentia Computatorica 4(1):157–175

    Google Scholar 

  13. Gál L, Lovassy R, Kóczy LT (2010) Function approximation performance of fuzzy neural networks based on frequently used fuzzy operations and a pair of new trigonometric norms. In: Proceedings of the IEEE world congress on computational intelligence (WCCI 2010), FUZZ-IEEE 2010, Barcelona, Spain, pp 1514–1521

  14. Hamacher H (1978) Über logische Vernupfungen unscharfer Aussagen und deren Zugehörige Bewertungsfunctionen. In: Trappl R, Klir GJ, Ricciardi L (eds) Progress in cybernetics and systems research, vol 3. Hempisphere, Washington, DC, pp 276–288

  15. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  MathSciNet  Google Scholar 

  16. Rödder W (1975) On “and” and “or” connective in fuzzy set theory, operations research. Technical University of Aachen

  17. Klement EP, Mesiar R, Pap E (2000) Triangular norms, volume 8 of trends in logic. Studia Logica Library. Kluwer Academic Publishers, Dordrecht

  18. Kóczy LT, Hajnal M (1977) A new attempt to axiomatize fuzzy algebra with an application example. Probl Control Inf Theory 6(1):47–66

    MATH  Google Scholar 

  19. Kóczy LT (1978) Interactive G-algebras and fuzzy objects of type N. J Cybern 8:273–290

    Article  MATH  Google Scholar 

  20. Larsen PM (1980) Industrial application of fuzzy logic control. Int J Man Mach Stud 12(4):3–10

    Article  Google Scholar 

  21. Gál L, Kóczy LT (2008) Advanced bacterial memetic algorithms. Acta Technica Jaurinensis Series Intelligentia Computatorica 1(3):481–498

    Google Scholar 

  22. Balázs K, Kóczy L, Kóczy LT (2012) Hierarchical-interpolative fuzzy system construction by genetic and bacterial memetic programming approaches. Int J Uncertain Fuzziness Knowl Based Syst 20(Suppl 2):105–131

    Article  Google Scholar 

  23. Botzheim J, Hámori B, Kóczy LT, Ruano AE (2002) Bacterial algorithm applied for fuzzy rule extraction. In: Proceedings of the IPMU 2002, Annecy, France, pp 1021–1026

  24. Rudas IJ, Fodor J (2006) Information aggregation in intelligent systems using generalized operators. Int J Comput Commun Control 1(1):47–57

    Google Scholar 

  25. Taghavifar H, Mardani A (2013) A knowledge-based Mamdani fuzzy logic prediction of the motion resistance coefficient in a soil bin facility for clay loam soil. Int J Neural Comput Appl (accepted 27 Mar 2013)

  26. Subasi S, Beycioglu B, Sancak E, Sahin I (2013) Rule-based Mamdani type fuzzy logic model for the prediction of compressive strength of silica fume included concrete using non-destructive test results. Int J Neural Comput Appl 22(6):1133–1139

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Óbuda University Grants, the project TÁMOP 421B; Széchenyi István University Main Research Direction Grant; and the National Scientific Research Fund Grants OTKA K 75711 and K 105529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Lovassy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gál, L., Lovassy, R., Rudas, I.J. et al. Learning the optimal parameter of the Hamacher t-norm applied for fuzzy-rule-based model extraction. Neural Comput & Applic 24, 133–142 (2014). https://doi.org/10.1007/s00521-013-1499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1499-3

Keywords

Navigation