
Applications and Analysis of Bio-Inspired Eagle Strategy for

Engineering Optimization

Xin-She Yang and Mehmet Karamanoglu
School of Science and Technology, Middlesex University,
The Burroughs, London NW4 4BT, United Kingdom.

T. O. Ting
Department of Electrical and Electronic Engineering,

Xi’an Jiaotong-Liverpool University,
Suzhou, Jiangsu Province, P. R. China.

Yu-Xin Zhao
College of Automation, Harbin Engineering University,

Harbin, P. R. China.

Abstract

All swarm-intelligence-based optimization algorithms use some stochastic components to
increase the diversity of solutions during the search process. Such randomization is often repre-
sented in terms of random walks. However, it is not yet clear why some randomization techniques
(and thus why some algorithms) may perform better than others for a given set of problems. In
this work, we analyze these randomization methods in the context of nature-inspired algorithms.
We also use eagle strategy to provide basic observations and relate step sizes and search effi-
ciency using Markov theory. Then, we apply our analysis and observations to solve four design
benchmarks, including the designs of a pressure vessel, a speed reducer, a PID controller and
a heat exchanger. Our results demonstrate that eagle strategy with Lévy flights can perform
extremely well in reducing the overall computational efforts.

Citation details: X. S. Yang, M. Karamanoglu, T. O. Ting and Y. X. Zhao, Applications and
Analysis of Bio-Inspired Eagle Strategy for Engineering Optimization Neural Computing and Appli-
cations, vol. 25, No. 2, pp. 411-420 (2014).

1 Introduction

In contemporary neural computing, an active branch of research is the nature-inspired algorithms
with diverse applications in engineering optimization. Most of these algorithms are based on the so-
called swarm intelligence, and usually involve some form of non-deterministic, stochastic components,
which often appear in terms of random walks. Such random walks can be surprisingly efficient when
combined with deterministic components and elitism, as this has been demonstrated in many modern
metaheuristic algorithms such as particle swarm optimization, firefly algorithm and other algorithms
[1, 18, 26, 29, 30, 32, 33, 34, 35].

Recent studies in nature-inspired algorithms have shown promising results with divers algorithms,
including new algorithms such as accelerated particle swarm optimization [32, 11], bat algorithm [33],
krill herd algorithm [10], flower algorithm [40], and other algorithms [35, 26]. A comprehensive review
can be found in [5, 9, 38]. In all these algorithms, different degrees of randomization, exploration
and exploitation have been used so as to maintain a good degree of solution diversity in the solution
population, which helps to enhance the performance of these algorithms. Applications of modern
nature-inspired algorithms have been very diverse with promising results [5, 6, 27, 12, 31].

1

ar
X

iv
:1

40
8.

53
20

v1
 [

m
at

h.
O

C
]

 2
2

A
ug

 2
01

4

In order to gain insight into the working mechanism of a stochastic algorithm, mathematical
analysis of the key characteristics of random walks is necessary. Though there are some extensive
studies of random walks with solid results in the statistical literature, most of these results are
based on rigorous assumptions so as to obtain theoretical results using Markov chain models and/or
Markov chain Monte Carlo methods [7, 8, 13, 14, 15, 29]. Consequently, such results may be too
theoretical, and thus have not much practical implications for designing optimization algorithms.
In addition, it is necessary to translate any relevant theoretical results in the right context so that
they are truly useful to the optimization communities. The current work has extended our earlier
work extensively [37]. Therefore, the aims of this paper are two-folds: to introduce the random
walks and Lévy flights in the proper context of metaheuristic optimization, and to use these results
in the framework of Markov theory to analyze the iteration process of algorithms such as step sizes,
efficiency and the choice of some key parameters.

The rest of the paper is organized as follows: Section 2 briefly introduce the eagle strategy (ES).
Section 3 introduces the fundamentals of random walks and discusses Lévy flights, as well as their
links to optimization via Markov chain theories. Section 4 analyzes the choice of step sizes, stopping
criteria and efficiency. Section 5 presents four case studies for engineering optimization applications.
Finally, we briefly draw the conclusions in Section 6.

2 Eagle Strategy and Solution Diversity

2.1 Eagle Strategy

Eagle strategy developed by Xin-She Yang and Suash Deb [35] is a two-stage method for optimiza-
tion. It uses a combination of crude global search and intensive local search employing different
algorithms to suit different purposes. In essence, the strategy first explores the search space globally
using a Lévy flight random walk; if it finds a promising solution, then an intensive local search
is carried out by using a more efficient local optimizer such as hill-climbing and downhill simplex
method. Then, the two-stage process starts again with new global exploration followed by a local
search in a new region. The main steps of this method can be represented as the pseudo code as
outlined in Fig. 1.

The advantage of such a combination is to use a balanced tradeoff between global search which
is often slow and a fast local search. Some tradeoff and balance are important. Another advantage
of this method is that we can use any algorithms we like at different stages of the search or even at
different stages of iterations. This makes it easy to combine the advantages of various algorithms so
as to produce better results.

It is worth pointing out that this is a methodology or strategy, not an algorithm. In fact, we
can use different algorithms at different stages and at different time of the iterations. The algorithm
used for the global exploration should have enough randomness so as to explore the search space
diversely and effectively. This process is typically slow initially, and should speed up as the system
converges, or no better solutions can be found after a certain number of iterations. On the other
hand, the algorithm used for the intensive local exploitation should be an efficient local optimizer.
The idea is to reach the local optimality as quickly as possible, with the minimal number of function
evaluations. This stage should be fast and efficient.

For the local optimizer in this paper, we will use the accelerated particle swarm optimization
(APSO) [32] which is a simple but efficient variant of particle swarm optimization. The APSO
essentially has one updating equation

xt+1
i = (1− β)xti + βg∗ + αεt, (1)

where g∗ is the current best solution among all the solutions xti at iteration t. β ∈ (0, 1) is a
parameter, and α = O(1) is the scaling factor. Here εt is a random number drawn from a standard
normal distribution N(0, 1). As the typical scale L of a problem may vary, α should be linked to L
as α = 0.1αtL where αt should decrease as the iterations proceed in the following form

αt = α0γ
t, (2)

2

Objective function f(x)
Initialization and random initial guess xt=0

while (stop criterion)
Global exploration by randomization (e.g. Lévy flights)
Evaluate the objectives and find a promising solution
Intensive local search via an efficient local optimizer

if (a better solution is found)
Update the current best

end
Update t = t+ 1
end

Figure 1: Pseudo code of the eagle strategy.

where α0 ∈ (0.5, 1) and 0 < γ < 1. From our previous parametric study, we will use α0 = 1, β = 0.5,
and γ = 0.97 [32].

2.2 Exploration, Exploitation and Solution Diversity

In almost all nature-inspired algorithms, two conflicting and yet important components are explo-
ration and exploitation, or diversification and intensification. The balance between these components
are very important to ensure the good performance of an algorithm [1, 4]. In other words, a good
degree of diversity should be maintained in the population of the solutions so that exploration and
exploitation can be reflected in the evolving population. If the population is too diverse, it is good
for global exploration, but it may slow down the convergence. On the other hand, if the diversity
is too low, intensive local exploitation may lead to premature convergence, and thus may loose the
opportunity of finding the global optimality. However, how to maintain good balance is still an
unsolved problem, and different algorithms may have different ways of dealing with this issue.

In most algorithms such as the particle swarm optimization, exploration and diversity can be
considered as the steps by using random numbers, while intensification and exploitation are by the
use of current global best. However, there is no direct control on how to switch between these
components. Even in the accelerated particle swarm optimization (ASPO), diversity is mainly
controlled by a random-walk-like term, while the control is indirectly carried out by an annealing-
like reduction of randomness. On the other hand, eagle strategy provides a direct control of these
two stages/steps in an iterative manner. First, solutions are sampled in a larger search space, and
these solutions often have high diversity. These solutions are then fed into the APSO for evolution
so that a converged state can be reached, and at the converged state, solution diversity is low. Then,
a new set of samples are drawn again from the larger search space for another round of intensive
APSO iteration stage. In this way, both exploration and exploitation have been used to main a good
degree of diversity in the overall population, which also allows the system to converge periodically
towards global optimality.

As we will see in the late analysis of random walks and search strategies, randomization techniques
are often used for exploration to increase the diversity of the solutions, while the selection of good
solutions and evolution of an algorithm tend to lead to convergence of the system. However, their
role is subtle. For example, in memetic algorithms, the balance is even more subtle [4]. It can
be expected that the analysis in the rest of the paper can provide some insight into the working
mechanisms and subtlety of random walks and randomization techniques in maintaining the good
diversity of solutions in different algorithms.

3

3 Random Walks and Lévy Flights as a Search Strategy

In modern stochastic optimization algorithms, especially those based on swarm intelligence, there
are often a deterministic component and a stochastic component, though traditional algorithms such
as the steepest descent method are purely deterministic. Randomness is now an essential part of
the stochastic search algorithms.

Randomization techniques such as random walks have become an integrated part of a search
process in stochastic algorithms. However, how to achieve the effective randomization remains an
open question. The exact form of randomization may depend on the actual algorithm of interest.
One of the objective of this paper is to analyze and discuss the main concepts of random walks and
Lévy flights, and their role in metaheuristic optimization.

3.1 Search via Random Walks

In essence, a stochastic search process involves the use of a random process to generate new solutions
in the search space so that the solutions can sample the landscape appropriately. However, the
effectiveness of this sampling process depends on the random process used and the actual way of
generating new solutions/samples.

If the search space is treated as a black box (thus no knowledge or assumption about the modality
is made), a random walk is one of the most simplest ways to carry out the search for optimality.
Briefly speaking, a random walk is a random process which consists of taking a series of consecutive
random steps [29, 34]. That is, the total moves SN after N steps are the sum of each consecutive
random step Xi(i = 1, ..., N):

SN =

N∑
i=1

Xi = X1 + ...+XN =

N−1∑
i=1

Xi +XN = SN−1 +XN , (3)

where Xi is a random step drawn from a random distribution such as a normal distribution. De-
pending on the perspective, the above relationship can also be considered as a recursive formula.
That is, the next state SN will only depend on the current existing state SN−1 and the move or
transition XN from the existing state to the next state. In other words, the next state will depend
only on the current state and the transition probability, and it has no direct link to the states in the
past. From the Markov theory, we know that this is typically the main property of a Markov chain,
to be introduced later.

It is worth pointing out that there is no specific restriction on the step sizes. In fact, the step size
or length in a random walk can be fixed or varying. Random walks have many applications in physics,
economics, statistics, computer sciences, environmental science and engineering. Mathematically
speaking, a random walk can be defined as

St+1 = St + wt, (4)

where St is the current location or state at t, and wt is a step or random variable drawn from a
known probability distribution.

If each step or jump is carried out in the d-dimensional space, the random walk SN discussed
earlier becomes a random walk in higher dimensions. In addition, there is no reason why the step
length should be fixed. In general, the step size can also vary according to a known distribution. If
the step length obeys the Gaussian distribution, the random walk becomes the Brownian motion or
a diffusion process.

As the number of steps N increases, the central limit theorem implies that the random walk
should approach a Gaussian distribution. If the steps are drawn from a normal distribution with
zero mean, the mean of particle locations is obviously zero. However, their variance will increase
linearly with t. This is valid for the case without any drift velocity.

In a more generalized case in the d-dimensional space, the variance of Brownian random walks
can be written as

σ2(t) = |v0|2t2 + (2dD)t, (5)

4

where v0 is the drift velocity of the system [34, 41]. Here D = s2/(2τ) is the effective diffusion
coefficient which is related to the step length s over a short time interval τ during each jump. For
example, the well-known Brownian motion B(t) obeys a Gaussian distribution with zero mean and
time-dependent variance:

B(t) ∼ N(0, σ2(t)), (6)

where ∼ means the random variance obeys the distribution on the right-hand side; that is, samples
should be drawn from the distribution.

In physics and chemistry, a diffusion process can be considered as a series of Brownian motion,
which obeys the Gaussian distribution. Therefore, standard diffusion is often referred to as the
Gaussian diffusion. If the motion at each step is not Gaussian, then the diffusion is called non-
Gaussian diffusion. On the other hand, if the step lengths are drawn from other distributions, we
have to deal with more generalized random walks. For example, a very special case is when step
lengths obey the Lévy distribution, such a random walk is called Lévy flight or Lévy walk [22, 41].
It is worth pointing out that a Lévy flight is also a Markov chain. In fact, any algorithmic path
traced by the current solution plus a transition probability forms a Markov chain. This is one of the
reason why Markov chain theory can be used to analyzed stochastic algorithms such as simulated
annealing and cuckoo search.

In Section 4, we will discuss random walks without drift. That is, we will set v0 = 0.

3.2 Lévy Flights

In standard Gaussian random walks, the steps are drawn from a Gaussian normal distribution
N(0, σ), and these steps are mostly limited within 3σ. Therefore, it can be expected that very large
steps (> 3σ) are extremely rarely. Sometimes, it may be necessary to generate new solutions that
are far from the current state so as to avoid being trapped in a local region for a long time. In this
case, random walks with varying step sizes may be desirable. For example, Lévy flights are another
class of random walks whose step lengths are drawn from the so-called Lévy distribution. When
steps are large, Lévy distribution can be approximated as a simple power-law

L(s) ∼ |s|−1−β , (7)

where 0 < β ≤ 2 is an index [16, 19, 21, 22]. However, this power-law is just an approximation to
the Lévy distribution.

To be more accurate, Lévy distribution should be defined in terms of the following Fourier
transform

F (k) = exp[−A|k|β], 0 < β ≤ 2, (8)

where A is a scaling parameter. In general, the inverse of this integral is not straightforward, as no
analytical form can be obtained, except for a few special cases. One special case β = 2 corresponds
to a Gaussian distribution, and another case β = 1 leads to a Cauchy distribution.

Though the inverse integral is difficult, however, one useful technique is to approximate

L(s) =
1

π

∫ ∞
0

cos(ks) exp[−A|k|β]dk, (9)

when s is large. That is,

L(s)→ A β Γ(β) sin(πβ/2)

π|s|1+β
, s→∞, (10)

where the Gamma function Γ(z) is defined as

Γ(z) =

∫ ∞
0

tz−1e−tdt. (11)

Obviously, when z = n is an integer, it becomes Γ(n) = (n− 1)!.
Since the steps drawn from a Lévy distribution can be occasionally very large, random walks in

terms of Lévy flights are more efficient than standard Brownian random walks. It can be expected

5

that Lévy flights are efficient in exploring unknown, large-scale search space. There are many reasons
to explain this high efficiency, and one reason is that the variance of Lévy flights

σ2(t) ∼ t3−β , 1 ≤ β ≤ 2, (12)

increases much faster than the linear relationship (i.e., σ2(t) ∼ t) of Brownian random walks.
It is worth pointing out that a power-law distribution is often linked to some scale-free charac-

teristics, and Lévy flights can thus show self-similarity and fractal behavior in the flight patterns.
Studies show that Lévy flights can maximize the efficiency of the resource search process in uncertain
environments. In fact, Lévy flights have been observed among the foraging patterns of albatrosses,
fruit flies, and spider monkeys. Even humans such as the Ju/’hoansi hunter-gatherers can trace
paths of Lévy-flight patterns [23, 24, 25, 41]. In addition, Lévy flights have many applications.
Many physical phenomena such as the diffusion of fluorenscent molecules, cooling behavior and
noise could show Lévy-flight characteristics under right conditions.

Lévy flights have been successfully used in optimization to enhance the search efficiency of nature-
inspired algorithms [38, 34, 39, 23]. The above nonlinear variance partly explain why. As we will see
below, a good combination with other methods such as eagle strategy can be even more efficient.

3.3 Optimization as Interacting Markov Chains

If we look at an algorithm from the Markovian view, an algorithm is intrinsically related to Markov
chains because an algorithm is an iterative procedure whose aim is to generate new, better solutions
from the current solution set so that the best solution can be reached in a finite number of steps,
ideally, as fewer steps as possible. In this sense, the next solutions (i.e., states) can depend only on
the current solution (states) and the way to move (the transition) towards the new solution (i.e.,
new states). Therefore, the solution paths are Markov chains.

In the very simplest case, a very good example is the so-called simulated annealing [18, 29],
which is a Markov chain generating a piece-wise path in the search space. Broadly speaking, swarm-
intelligence-based algorithms such as particle swarm optimization, bat algorithm and eagle strategy
can all be considered as a system of multiple interacting Markov chains [33, 35]. Now, let us discuss
these concepts in detail.

Briefly speaking, a random variable U is said to form a Markov process if the transition proba-
bility, from state Ut = Si at time t to another state Ut+1 = Sj , depends only on the current state
Ui, independent of any past states before t. Mathematically, we have

P (i, j) ≡ P (Ut+1 = Sj

∣∣∣U0 = Sp, ..., Ut = Si) = P (Ut+1 = Sj

∣∣∣Ut = Si), (13)

which is independent of the states before t. The sequence of random variables (U0, U1, ..., Un)
generated by a Markov process is subsequently called a Markov chain. Obviously, a random walk is
a Markov chain.

The transition probability
P (i, j) ≡ P (i→ j) = Pij , (14)

is also called the transition kernel of the Markov chain. From the algorithmic point of view, different
algorithms will have different transition kernel; however, it is not known what kernels are most
effective for a given problem. In order to solve an optimization problem, the feasible solution set can
be obtained by performing a random walk, starting from a good initial but random guess solution.
However, simple or blind random walks are not efficient.

To be computationally efficient and effective in searching for new solutions, effective transition
kernels should allow to generate new solutions near the truly optimal solutions as well as to increase
the mobility of the random walk so as to explore the search space more effectively. In addition, the
best solutions found so far should be kept in the population. Ideally, the way to control the walk
should be carried out in such a way that it can move towards the optimal solutions more quickly,
rather than wandering away from the potential best solutions. These are the challenges for most
metaheuristic algorithms, and various attempts are being made so as to design better optimization
algorithms.

6

4 Search Efficiency and Step Sizes

4.1 Step Sizes in Random Walks

In all metaheuristic algorithms, different forms of random walks are widely used for randomization
and local search [29, 33]. Obviously, a proper step size is very important.

Many algorithms typically use the following generic equation:

xt+1 = xt + s εt, (15)

where εt is drawn from a standard normal distribution with zero mean and unity standard deviation.
Here, the step size s is essentially a scaling factor, controlling how far a random walker, such as an
agent or a particle in metaheursitics, can move for a fixed number of iterations.

From the above equation, it can be expected that the new solution xt+1 generated will be too
far away from the old solution (or more often the current best) if s is too large. Then, a move that
is too far away is unlikely to be accepted as a better solution. On the other hand, if s is too small,
the change is too small to be significant, and the new solution may be too close to the existing
solution. Consequently, the diversity of the new solutions is limited, and thus the search process
is not efficient. Therefore, an appropriate step size is important to maintain the search process as
efficient as possible.

There are extensive good theoretical results about isotropic random walks in the literature [16,
19, 21, 22, 24, 29], and one of the results concerns the average distance r traveled in the d-dimension
space, which is

r2 = 2dDt. (16)

Here, D = s2/2τ is the effective diffusion coefficient where s is the step size or distance traveled at
each jump. In addition, τ is the time taken for each jump. By re-arranging the above equation, we
get

s2 =
τ r2

t d
, (17)

which can be used to estimate the typical step sizes for a give problem. For example, for a typical
scale L of dimensions of interest, the local search is typically limited in a region of r = L/10. As the
iterations are discrete, τ = 1 can used for simplicity. Obviously, the number of iterations should not
be too large; otherwise, the computational costs are too high. Typically, the number of generations
is usually t = 100 to 1000 for most applications. Therefore, we have

s ≈ r√
td

=
L/10√
t d

. (18)

Let us try to do some estimates. For d = 1 and t = 100, we have s ≈ 0.01L, while s ≈ 0.001L
for d = 10 and t = 1000. In addition, for d = 100 and t = 1000, we have s ≈ L/3000. As step sizes
could differ from variable to variable, a step size ratio s/L is more generic. Therefore, we can use
s/L = 0.001 to 0.01 for most applications. In the rest of the paper, we will usually set the number
of iterations as 200 in the case studies in Section 5.

4.2 Accuracy and Number of Iterations

If an algorithm works well, the final accuracy of the obtained solution will depend on the number of
iterations. In principle, a higher number of iterations may be more likely to obtain higher accuracy,
though stagnation may occur. From the theory of random walks, we can estimate the number of
iterations needed for a given tolerance, though such estimates are just guidelines. For example, in
order to achieve the accuracy of δ = 10−5, the number of steps or iterations Nmax needed by pure
random walks can be estimated by

Nmax ≈
L2

δ2d
, (19)

7

which is essentially an upper bound. As an estimate for L = 10 and d = 100, we have

Nmax ≈
102

(10−5)2 × 100
≈ 1010, (20)

which is a huge number that is not easily achievable in practice. However, this number is still
far smaller than that needed by a uniform or brute force search method. It is worth pointing out
the above estimate is the upper limit for the worst-case scenarios. In reality, most metaheuristic
algorithms require far fewer numbers of iterations.

Though the above estimate may be crude, it does imply another interesting fact that the number
of iterations will not be affected much by dimensionality. In fact, higher-dimensional problems do not
necessarily increase the number of iterations. This may lead to a rather surprising possibility that
random walks may be efficient in higher dimensions if the optimization problem is highly multimodal.
This may provide some hints for designing better algorithms by cleverly using random walks and
other randomization techniques. As we will see below, different random walks will indeed lead to
different convergence rates, and Lévy flights are one of the best randomization techniques.

4.3 Why Lévy Flights and Eagle Strategy are so Efficient

As mentioned earlier, the variance of a Gaussian random walk increases linearly with time t, while
the variance of Lévy flights usually increases nonlinearly at a higher rate. As a result, if Lévy flights
instead of Gaussian random walks are used, the above estimate becomes

Nmax ≈
(L2

δ2d

)1/(3−β)
. (21)

If we use β = 1.5 together the same values of L = 10, d = 100 and δ = 10−5, we have

Nmax ≈ 4.6× 106. (22)

It can be clearly seen that Lévy flights can reduce the number of iterations by about 4 orders [O(104)]
from O(1010) in Eq. (20) to O(106) in Eq. (22).

Ideally, the step sizes in any nature-inspired algorithm should be controlled in such a way that
they can do both local and global search more efficiently. To illustrate this point, let us split the
search process into two stages as those in the efficient Eagle Strategy (ES), developed by Xin-She
Yang and Suash Deb [35, 36]. The first stage uses a crude/large step, say, δ1 = 10−2, and then in the
second stage, a finer step size δ2 = 10−5 is used so as to achieve the same final accuracy as discussed
in the previous section. The first stage can cover the whole region L1 = L, while the second region
should cover smaller, local regions of size L2. Typically, L2 = O(L1/1000). Using the above values
and L1 = L = 10 and L2 = L/1000 = 0.01, then we have

N1,max ≈ 104, N2,max ≈ 104. (23)

It can be seen clearly that the number of iterations can be reduced by about 6 orders (106) from
O(1010) [see Eq. (20)] to O(104) [see Eq. (23)]. This approximate values for the number of iterations
have been observed and used in the literature [38, 12]. For example, the typical number of iterations
for bat algorithm in [12] and multiobjective cuckoo search in [38] are typically 20,000, which were
indeed consistent with our estimations here.

It is worth pointing out that the above reduction is by the two-stage Eagle Strategy only without
using Lévy flights. It can be expected that Lévy flights can reduce the number of iterations even
further. In fact, if Lévy flights are used within the Eagle Strategy, then the above estimates can be
reduced to

N1,max ≈ N2,max ≈ 464, (24)

which is obtained by substituting L1 (or L2) and δ1 (or δ2) into Eq. (21). The relative lower
number of iterations can be both practical and realistic. Therefore, the good combination of Lévy
flights with Eagle Strategy can reduce the number of iterations from O(1010) to less than O(103),

8

which works almost like a magic. This shows that, with a combination of good algorithms, eagle
strategy can significantly reduce the computational efforts and may thus increase the search efficiency
dramatically. It may be possible that a multi-stage eagle strategy can be developed to enhance this
efficiency even further.

5 Applications

The above analyses and observations have indicated that a proper combination of randomization
techniques such as Lévy flights, eagle strategy and a good optimizer such as APSO can reduce the
computational efforts dramatically and thus improve the search efficiently significantly. Henceforth,
we will use eagle strategy with APSO to solve four nonlinear benchmarks so as to validate the above
theoretical results. The four optimization benchmarks are: design optimization of a pressure vessel,
a speed reducer, a PID controller and a heat exchanger.

The parameter settings for the algorithms used in the rest of paper have been based on a para-
metric study. For the eagle strategy, we used 5 rounds of two-stage iterations, and each round used
the APSO for an intensive search. The population size is n = 20, and the iteration for APSO was
set to t = 200. This leads to a total of 5∗20∗200 = 20, 000 function evaluations for each case study.
In addition, the parameters in APSO have been set to be α0 = 1, β = 0.5, and γ = 0.97.

5.1 Pressure Vessel Design

Pressure vessels are literally everywhere such as champagne bottles and gas tanks. For a given
volume and working pressure, the basic aim of designing a cylindrical vessel is to minimize the total
cost. Typically, the design variables are the thickness d1 of the head, the thickness d2 of the body,
the inner radius r, and the length L of the cylindrical section [2, 9]. This is a well-known test
problem for optimization and it can be written as

minimize f(x) = 0.6224d1rL+ 1.7781d2r
2 + 3.1661d21L+ 19.84d21r, (25)

subject to the following constraints:

g1(x) = −d1 + 0.0193r ≤ 0
g2(x) = −d2 + 0.00954r ≤ 0
g3(x) = −πr2L− 4π

3 r
3 + 1296000 ≤ 0

g4(x) = L− 240 ≤ 0.

(26)

The simple bounds are
0.0625 ≤ d1, d2 ≤ 99× 0.0625, (27)

and
10.0 ≤ r, L ≤ 200.0. (28)

Recently, Cagnina et al [2] used an efficient particle swarm optimiser to solve this problem and they
found the best solution f∗ ≈ 6059.714 at

x∗ ≈ (0.8125, 0.4375, 42.0984, 176.6366). (29)

This means the lowest price is about $6059.71.
Using ES with APSO, we obtained the same results, but we used significantly fewer function

evaluations, comparing with APSO alone and other methods. In fact, we use 5 stages and each
stage with a total of 200 iterations. This is at least 10 times less than the iterations needed by
standard PSO. This again confirmed that ES is indeed very efficient.

9

5.2 Speed Reducer Design

Another important benchmark is the design of a speed reducer which is commonly used in many
mechanisms such as a gearbox [2, 9]. This problem involves the optimization of 7 variables, including
the face width, the number of teeth, the diameter of the shaft and others. All variables are continuous
within some limits, except x3 which only takes integer values.

f(x) = 0.7854x1x
2
2(3.3333x23 + 14.9334x3 − 43.0934)

−1.508x1(x26 + x27) + 7.4777(x36 + x37) + 0.7854(x4x
2
6 + x5x

2
7) (30)

g1(x) =
27

x1x22x3
− 1 ≤ 0, g2(x) =

397.5

x1x22x
2
3

− 1 ≤ 0, (31)

g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0, g4(x) =
1.93x35
x2x3x47

− 1 ≤ 0, (32)

g5(x) =
1.0

110x36

√(745.0x4
x2x3

)2
+ 16.9× 106 − 1 ≤ 0, (33)

g6(x) =
1.0

85x37

√(745.0x5
x2x3

)2
+ 157.5× 106 − 1 ≤ 0, (34)

g7(x) =
x2x3
40
− 1 ≤ 0, g8(x) =

5x2
x1
− 1 ≤ 0, (35)

g9(x) =
x1

12x2
− 1 ≤ 0, g10(x) =

1.5x6 + 1.9

x4
− 1 ≤ 0, (36)

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0, (37)

where the simple bounds are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.8 ≤ x5 ≤ 8.4, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. In one of latest studies, Cagnina et al. [2]
obtained the following solution

x∗ = (3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683) (38)

with fmin = 2996.348165.
Using our ES with APSO, we have obtained the new best solution

x∗ = (3.5, 0.7, 17, 7.3, 7.8, 3.34336449, 5.285351) (39)

with the best objective fmin = 2993.7495888. In existing studies [2], the total number of function
evaluations was often 350,000. Here, we used n = 20 for 200 iterations and 5 rounds of eagle strategy
runs, giving a total of 20, 000 function evaluations. This saves about 93% of the computational costs.
We can see that ES not only provides better solutions but also finds solutions more efficiently using
fewer function evaluations. Again the number of iterations (20,000) is consistent with our theoretical
estimations given earlier in Section 4.

5.3 Design of a PID Controller

Let us use ES with APSO [32] to design a well-known PID controller [28, 20]

u(t) = Kp

[
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

]
, (40)

where e(t) = r(t) − y(t) is the error signal between the response y(t) and the reference input r(t),
and u(t) is the input signal to the so-called plant model. The well-established Ziegler-Nichols tuning

10

Figure 2: PID controller design by ES with APSO.

scheme can usually produce very good results. Here, we use ES with APSO to minimize the rise
time, the overshoot and settling time.

It is required to tune a third-order system with the following transfer function

G(s) =
7

s3 + 3s2 + 3s+ 1
, (41)

so that responses of the closed loop system to track a reference meet the following requirements: rise
time is less than 1.5 s, settling time is less than 5.5 s, and the overshoot is less than 5%. If we use
the standard Matlab control system toolbox [20], the obtained design by the Ziegler-Nichols scheme
is

GPID(s) = 0.311(1 +
1

2.3643s
+ 0.5911s), (42)

which gives a rise time of 1.6 s, a settling time of 4.95, and overshoot of about 8.54%. Clearly, not
all two requirements are met.

In order to refine the designs, we use ES with APSO, and the results are shown in Fig. 2. The
final design becomes

GPID,new(s) = 0.5366
(

1 +
1

3.3940s
+ 0.8485s), (43)

which gives a rise time of 1.0 s, a settling time of 5.25 s, and the overshoot of 4.97%. All the design
requirements are met by this new design. As before, the total number of function evaluations is
20,000.

5.4 Heat Exchanger Design

Heat transfer management is very important in many applications such as central heating systems
and microelectronics. There are many well-known benchmarks for testing design/optimization tools,
and one of the benchmarks is the design of a heat exchanger [33]. This design problem has 8 design
variables and 6 inequality constraints, which can be written as

Minimize f(x) = x1 + x2 + x3, (44)

subject to
g1(x) = 0.0025(x4 + x6)− 1 ≤ 0, (45)

g2(x) = 0.0025(x5 + x7 − x4)− 1 ≤ 0, (46)

g3(x) = 0.01(x8 − x5)− 1 ≤ 0, (47)

g4(x) = 833.33252x4 + 100x1 − x1x6 − 83333.333 ≤ 0, (48)

g5(x) = 1250x5 + x2(x4 − x7)− 120x4 ≤ 0, (49)

11

g6(x) = x3x5 − 2500x5 − x3x8 + 1.25× 106 ≤ 0. (50)

The first three constraints are linear, while the last three constraints are nonlinear.
By using ES with APSO for the same parameter values of n = 20, t = 200 iterations and 5 ES

stages, we obtained the best solution

x∗ = (579.30675, 1359.97076, 5109.97052, 182.01770,

295.60118, 217.98230, 286.41653, 395.60118), (51)

which gives the optimal objective of fmin = 7049.248. This is exactly the same as the best solution
found by Yang and Gandomi [33] and is better than the best solutions reported in the previous
literature [17, 3]. In the study by Jaberipour and Khorram, they used 200,000 function evaluations,
while Deb used 320,080 function evaluations[3]. In the present study, we have used 20,000 function
evaluations that is less than 10% of the computational costs by other researchers.

As we can see from the above 4 case studies, ES with APSO can save about 90% of the com-
putational costs, which demonstrates the superior performance of ES with APSO. In order to show
that the improvements are significant, we use the standard Student t-test in terms of the numbers
of functional evaluations. For α = 0.05, the two-sample t-test gives p = 0.000207, which means that
the improvements are statistically significant.

6 Conclusions

All swarm-intelligence-based algorithms such as PSO and firefly algorithm can be viewed in a unified
framework of Markov chains; however, theoretical analysis remains challenging. We have used the
fundamental concepts of random walks and Lévy flights to analyze the efficiency of random walks
in nature-inspired metaheuristic algorithms.

We have demonstrated that Lévy flights can be significantly more efficient than standard Gaus-
sian random walks under appropriate conditions. By the right combination with Eagle Strategy,
significant computational efforts can be saved, as we have shown in the paper. The theory of inter-
acting Markov chains is complicated and yet still under active development; however, any progress
in such areas will play a central role in understanding how population- and trajectory-based meta-
heuristic algorithms perform under various conditions.

Even though we do not fully understand why metaheuristic algorithms work, this does not hinder
us to use these algorithms efficiently. On the contrary, such mysteries can drive and motivate us
to pursue further research and development in metaheuristics. Further research can focus on the
extensive testing of metaheuristics over a wide range of large-scale problems. In addition, various
statistical measures and self-adjusting random walks can be used to improve the efficiency of existing
metaheuristic algorithms.

On the other hand, the present results are mainly concerned with Gaussian random walks, Lévy
flights and eagle strategy. It can be expected these results may be further improved with parameter
tuning and parameter control in metaheuristic algorithms. It is a known fact that the settings of
algorithm-dependent parameters can influence the convergence behaviour of a given algorithm, but
how to find the optimal setting remains an open question. It can be very useful to carry out more
research in this important area.

References

[1] Blum C. and Roli A, (2003). Metaheuristics in combinatorial optimization: Overview and
conceptural comparison, ACM Comput. Surv., 35, 268–308.

[2] Cagnina L. C., Esquivel S. C., Coello Coello C. A., (2008). Solving engineering optimization
problems with the simple constrained particle swarm optimizer, Informatica, 32, 319-326.

[3] Deb K (2000). An efficient constraint handling method for genetic algorithms, Comput. Methods
Appl. Mech. Eng., 186(2), 311-338.

12

[4] Ferrante N., (2012). Diversity management in memetic algorithms, in: Handbook of Memetic
Algorithms, Studies in Computational Intelligence, Springer Berlin, vol. 379, pp. 153–165.

[5] Fister I., Fister Jr I., Yang X. S., Brest J., (2013). A comprehensive review of firefly algorithms,
Swarm and Evolutionary Computation, (in press) DOI 10.1016/j.swevo.2013.06.001.

[6] Fister I., Yang X. S., Brest J., Fister Jr. I., (2013). Modified firefly algorithm using quaternion
representation, Expert Systems with Applications, 40(16), 7220–7230.

[7] Fishman GS, (1995). Monte Carlo: Concepts, Algorithms and Applications, Springer, New
York, (1995).

[8] D. Gamerman, Markov Chain Monte Carlo, Chapman & Hall/CRC, (1997).

[9] Gandomi A. H., Yang X. S., and Alavi A. H., (2013). Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems, Engineering with Computers, 29(1), 17–35.

[10] Gandomi A. H., and Alavi A. H., (2012). Krill herd: a new bio-inspired optimization algorithm,
Communications in Nonlinear Science and Numerical Simulation, 17(12), pp. 4831–4845.

[11] Gandomi A. H., Yun G. J., Yang X. S., Talatahari S., (2013). Chaos-enhanced accelerated
particle swarm optimization, Communications in Nonlinear Science and Numerical Simulation,
18(2), 327–340.

[12] Gandomi A. H., Yang X. S., Alavi A. H., Talatahari S., (2013). Bat algoritm for constrained
optimization tasks, Neural Computing and Applications, 22(6), 1239–1255.

[13] Geyer CJ, (1992). Practical Markov Chain Monte Carlo, Statistical Science, 7, 473–511.

[14] Ghate A. and Smith R., (2008). Adaptive search with stochastic acceptance probabilities for
global optimization, Operations Research Lett., 36, 285–290.

[15] Gilks WR,Richardson S, and Spiegelhalter DJ, (1996). Markov Chain Monte Carlo in Practice,
Chapman & Hall/CRC.

[16] Gutowski M., (2001). Lévy flights as an underlying mechanism for global optimization algo-
rithms, ArXiv Mathematical Physics e-Prints, June, (2001).

[17] Jaberipour M and Khorram E, (2010). Two improved harmony search algorithms for solving
engineering optimization problems, Commun. Nonlinear Sci. Numer. Simulat., 15 (11), 3316-
31 (2010).

[18] Kirkpatrick S, Gellat CD and Vecchi MP, (1983). Optimization by simulated annealing, Science,
220, 670–680.

[19] Mantegna RN, (1994). Fast, accurate algorithm for numerical simulation of Levy stable stochas-
tic processes, Physical Review E, 49, 4677–4683.

[20] Matlab R©, Control System Toolbox, R2012a, version 7.14, (2012).

[21] Nolan JP, (2009). Stable distributions: models for heavy-tailed data, American University.

[22] Pavlyukevich I, (2007). Lévy flights, non-local search and simulated annealing, J. Computa-
tional Physics, 226, 1830–1844.

[23] Ramos-Fernandez G, Mateos JL, Miramontes O, Cocho G, Larralde H, Ayala-Orozco B, (2004).
Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi),Behav. Ecol.
Sociobiol., 55, 223-230.

[24] Reynolds AM and Frye MA, (2007). Free-flight odor tracking in Drosophila is consistent with
an optimal intermittent scale-free search, PLoS One, 2, e354 (2007).

13

[25] Reynolds AM and Rhodes CJ (2009). The Lévy fligth paradigm: random search patterns and
mechanisms, Ecology, 90, 877-887 (2009).

[26] Ting TO, Rao MVC, and Loo CK, (2006). A novel approach for unit commitment problem via
an effective hybrid particle swarm optimization, IEEE Trans. on Power Systems, 21(1), 1–8.

[27] Ting TO and Lee TS, (2012). Drilling optimization via particle swarm optimization, Int. J.
Swarm Intelligence Research, 1(2), 42–53 (2012).

[28] Xue DY, Chen YQ, Atherton, DP, (2007). Linear Feedback Control, SIAM Publications,
Philadephia.

[29] Yang XS, (2008). Introduction to Computational Mathematics, World Scientific Publishing,
(2008).

[30] Yang XS, (2008). Introduction to mathematical optimization: from linear programming to meta-
heuristics, Cambridge International Science Publishing, Cambridge, UK, (2008).

[31] Yang XS, (2011). Bat algorithm for multi-objective optimisation, Int. J. Bio-Inspired Compu-
tation, 3(5), 267–274.

[32] Yang XS, Deb S, and Fong S, (2011). Accelerated particle swarm optimization and support
vector machine for business optimization and applications, in: Networked Digital Technologies
2011, Communications in Computer and Information Science, 136, pp. 53–66 (2011).

[33] Yang XS and Gandomi AH, (2012). Bat algorithm: a novel approach for global engineering
optimization, Engineering Computations, 29(5), pp. 464–483.

[34] Yang XS, (2011). Review of meta-heuristics and generalised evolutionary walk algorithm, Int.
J. Bio-Inspired Computation, 3(2), pp. 77–84.

[35] Yang XS and Deb S, (2011). Eagle strategy using Lévy walk and firefly algorithms for stochastic
optimization, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010),
Springer, pp. 101-111 (2011).

[36] Yang XS and Deb S, (2012). Two-stage eagle strategy with differential evolution, Int. Journal
of Bio-Inspired Computation, 4(1), 1–5 (2012).

[37] Yang XS, Ting TO, Karamanoglu M, (2013). Random walks, Lévy flights, Markov chains and
metaheuristic optimization, in: Future Information Communication Technology and Applica-
tions, Lecture Notes in Electrical Engineering, Vol. 235, pp. 1055-1064 (2013).

[38] Yang XS and Deb S, (2013). Multiobjective cuckoo search for design optimization, Computers
& Operations Research, 40(6), 1616–1624.

[39] Yang XS, (2013). Multiobjective firefly algorithm for continuous optimization, Engineering with
Computers, 29(2), 175–184 (2013).

[40] Yang XS, Karamangolu M, He XS, (2013). Multi-objective flower algorithm for optimization,
Procedia Computer Science, 18, 861–868.

[41] Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, and Stanley HE, (1996).
Lévy flight search patterns of wandering albatrosses, Nature, 381, 413-415 (1996).

14

