Skip to main content
Log in

Chaos control of a bounded 4D chaotic system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of optimal and adaptive control for controlling chaos in a novel bounded four-dimensional (4D) chaotic system. This system can display hyperchaos, chaos, quasiperiodic and periodic behaviors, and may have a unique equilibrium, three equilibria and five equilibria for the different system parameters. An optimal control law is designed for the novel bounded chaotic system, based on the Pontryagin minimum principle. Furthermore, we propose Lyapunov stability conditions to control the new bounded 4D chaotic system with unknown parameters by a feedback control approach. Numerical simulations are presented to show the effectiveness of the proposed chaos control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lakshmanan M, Murali K (1996) Nonlinear oscillators: controlling and synchronization. World Scientific, Singapore

    MATH  Google Scholar 

  2. Han SK, Kerrer C, Kuramoto Y (1995) Dephasing and bursting in coupled neural oscillators. Phys Rev Lett 75:3190–3193

    Article  Google Scholar 

  3. Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399:354–359

    Article  Google Scholar 

  4. Choudhury SR, Van Gorder RA (2012) Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors. Nonlinear Dyn 69(4):2255–2267

    Article  MathSciNet  Google Scholar 

  5. Van Gorder RA (2013) Shil’nikov chaos in the 4D Lorenz–Stenflo system modeling the time evolution of nonlinear acoustic-gravity waves in a rotating atmosphere. Nonlinear Dyn 72(4):837–851

    Article  MATH  MathSciNet  Google Scholar 

  6. Ott E (2002) Chaos in dynamical systems, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Chen G (2000) Controlling chaos and bifurcation in engineering systems. CRC Press, Boca Raton

    Google Scholar 

  8. Zhao M, Zhang H, Wang Z (2013) Synchronization in complex dynamical networks based on the feedback of scalar signals. Neural Comput Appl 23(3–4):683–689

    Article  Google Scholar 

  9. Yu WG (2010) Stabilization of three-dimensional chaotic systems via single state feedback controller. Phys Lett A 374:1488–1492

    Article  MATH  Google Scholar 

  10. Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Model 35:3080–3091

    Article  MATH  MathSciNet  Google Scholar 

  11. Li C, Gao DY, Liu C, Chen G (2013) Impulsive control for synchronizing delayed discrete complex networks with switching topology. Neural Comput Appl. doi:10.1007/s00521-013-1470-3

  12. Wang P, Li D, Hu Q (2010) Bounds of the hyper-chaotic Lorenz–Stenflo system. Commun Nonlinear Sci Numer Simul 15:2514–2520

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang P, Li D, Wu X, Lü J, Yu X (2011) Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int J Bifurc Chaos Appl Sci Eng 21:2679–2694

    Article  MATH  Google Scholar 

  14. Zhang F, Shu Y, Yang H, Li X (2011) Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization. Chaos Solitons Fractals 44:137–144

    Article  MATH  Google Scholar 

  15. Liao X, Fu Y, Xie S, Yu P (2008) Globally exponentially attractive sets of the family of Lorenz systems. Sci China Ser F 51:283–292

    Article  MATH  MathSciNet  Google Scholar 

  16. Pogromsky A, Santoboni G, Nijmeijer H (2003) An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity 16:1597–1605

    Article  MATH  MathSciNet  Google Scholar 

  17. Leonov G (2001) Lyapunov dimension formulas for Henon and Lorenz attractors. St. Petersburg Math J 13:1–12

    Google Scholar 

  18. Leonov G (2012) Lyapunov functions in the attractors dimension theory. J Appl Math Mech 76:129–141

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang J, Tang W (2012) A novel bounded 4D chaotic system. Nonlinear Dyn 67:2455–2465

    Article  MATH  Google Scholar 

  20. Ahn CK (2009) An H\(\infty\) approach to anti-synchronization for chaotic systems. Phys Lett A 373(20):1729–1733

    Article  MATH  MathSciNet  Google Scholar 

  21. Effati S, Saberi Nik H, Jajarmi A (2013) Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn 73:499–508

    Article  MATH  MathSciNet  Google Scholar 

  22. Effati S, Saberi-Nadjafi J, Saberi Nik H (2013) Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl Math Model 38:759–774

    Google Scholar 

  23. Kunin I, Chernykh G, Kunin B (2006) Optimal chaos control and discretization algorithms. Int J Eng Sci 44:59–66

    Article  MATH  Google Scholar 

  24. Lenci S, Rega G (2003) Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos Solitons Fractals 15:173–186

    Article  MATH  MathSciNet  Google Scholar 

  25. El-Gohary A (2009) Chaos and optimal control of equilibrium states of tumor system with drug. Chaos Solitons Fractals 41:425–435

    Article  MATH  MathSciNet  Google Scholar 

  26. El-Gohary A, Alwasel IA (2009) The chaos and optimal control of cancer model with complete unknown parameters. Chaos Solitons Fractals 42:2865–2874

    Article  MATH  MathSciNet  Google Scholar 

  27. El-Gohary A (2008) Chaos and optimal control of cancer self-remission and tumor system steady states. Chaos Solitons Fractals 37:1305–1316

    Article  MATH  MathSciNet  Google Scholar 

  28. He P, Jing CG, Fan T, Chen CZ (2013) Outer synchronization of complex networks with multiple coupling time-varying delays. Int J Control Autom 6(4):13–32

    Google Scholar 

  29. Bhrawy AH, Alofi AS (2013) The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl Math Lett 26:25–31

    Article  MATH  MathSciNet  Google Scholar 

  30. Saberi Nik H, Effati S, Motsa SS, Shateyi S (2013) A new piecewise-spectral homotopy analysis method for solving chaotic systems of initial value problems. Math Probl Eng

  31. Doha EH, Bhrawy AH (2012) An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method. Comput Math Appl 64(4):558–571

    Article  MATH  MathSciNet  Google Scholar 

  32. Bhrawy AH (2013) A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl Math Comput 222:255–264

    Article  MathSciNet  Google Scholar 

  33. Dadras S, Momeni HR (2010) Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Phys Lett A 374:1368–1373

    Article  MATH  Google Scholar 

  34. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editor and reviewers for their conscientious reading of this paper and their numerous comments for improvement which were extremely useful and helpful in modifying the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Saberi Nik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saberi Nik, H., Golchaman, M. Chaos control of a bounded 4D chaotic system. Neural Comput & Applic 25, 683–692 (2014). https://doi.org/10.1007/s00521-013-1539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1539-z

Keywords

Navigation