Skip to main content
Log in

Principal pixel analysis and SVM for automatic image segmentation

  • Extreme Learning Machine and Applications
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Segmenting objects from images is an important but highly challenging problem in computer vision and image processing. This paper presents an automatic object segmentation approach based on principal pixel analysis (PPA) and support vector machine (SVM), namely PPA–SVM. The method comprises three main steps: salient region extraction, principal pixel analysis, as well as SVM training and segmentation. We consider global saliency information and color feature by means of visual saliency detection and histogram analysis, such that SVM training data can be selected automatically. Experiment results on a public benchmark dataset demonstrate that, compared with some classical segmentation algorithms, the proposed PPA–SVM method can effectively segment the whole salient object with reasonable better performance and faster speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hiremath PS, Jagadeesh P (2008) Content based image retrieval using color boosted salient points and shape features of an image. Int J Image Process 2(1):1–34

    Article  Google Scholar 

  2. Guo CL, Zhang LM (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Article  MathSciNet  Google Scholar 

  3. Yu Y, Mann GKI, Gosine RG (2010) An object-based visual attention model for robotic applications. IEEE Trans Syst Man Cybern B Cybern 40(5):1398–1412

    Article  Google Scholar 

  4. Li H, Ngan KN (2008) Saliency model based face segmentation in head-and-shoulder video sequences. J Vis Commun Image Represent 19(5):320–333

    Article  Google Scholar 

  5. Tsotsos JK, Culhane SM, Wai WYK, Lai Y, Davis N, Nuflo F (1995) Modelling visual attention via selective tuning. Artif Intell 78(1–2):507–545

    Article  Google Scholar 

  6. Cheng MM, Zhang GX, Mitra NJ, Huang X, Hu SM (2011) Global contrast based salient region detection, CVPR 21–23

  7. Itti L, Koch C, Niebur E (1998) A model of saliency based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  8. Harel J, Koch C, Perona P (2007) Graph-based visual saliency. Adv Neural Inf Process Syst 19:545–552

    Google Scholar 

  9. Lin Y, Fang B, Tang Y (2010) A computational model for saliency maps by using local entropy. Proc Conf AAAI Artif Intell 967–973

  10. Walter D, Koch C (2006) Modelling attention to salient proto-object. Neural Netw 19(9):1395–1407

    Article  Google Scholar 

  11. Valenti R, Sebe N, Gevers T (2009) Images saliency by isocentric curvedness and color, ICCV 2185–2192

  12. Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. International conference on multimedia, pp 374–381

  13. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum HY (2011) Learning to de tect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  14. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach, CVPR 1–8

  15. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, CVPR 1–8

  16. Achanta R, Hemami S, Esgtrada F, Süsstrunk S (2009) Frequency-tuned salient region detection, CVPR 1597–1604

  17. Rosin PL (2009) A simple method for detecting salient regions. Pattern Recognit 42(11):2363–2371

    Article  MATH  Google Scholar 

  18. Luo W, Li H, Liu G, Ngan KN (2011) Global salient information maximization for saliency detection. Sig Process Image Commun 27(3):238–248

    Article  Google Scholar 

  19. Yang W, Tang Y, Fang B, Shang Z, Lin Y (2013) Visual saliency detection with center shift. Neurocomputing 103(1):63–74

    Article  Google Scholar 

  20. Ouerhani N, Archip N, Hügli H, Erard PJ (2001) Visual attention guided seed selection for color image segmentation. Proceedings of the 9th international conference on computer analysis of image and patterns, lecture notes in computer science, vol 2124, Springer, London, pp 630–637

  21. Han J, Ngan KN, Li M, Zhang HJ (2006) Unsupervised extraction of visual attention objects in color images. IEEE Trans Circuits Syst 16(1):141–145

    Google Scholar 

  22. Ko BC, Nam JY (2006) Object-of-interest segmentation based on human attention and semantic region clustering. J Opt Soc Am A 23(10):2462–2470

    Article  Google Scholar 

  23. Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient region detection and segmentation. In: Proceedings of the 6th international conference on computer vision systems, lecture notes in computer science, vol. 5008, Springer, Berlin pp 66–75

  24. Donoser M, Urschler M, Hirzer M, Bischof H (2009) Saliency driven total variation segmentation, ICCV 817–824

  25. Liu Z, Li W, Shen L, Han Z, Zhang Z (2010) Automatic segmentation of focused objects from images with low depth of field. Pattern Recognit Lett 31(7):572–581

    Article  Google Scholar 

  26. Lee CY, Leou JJ, Hsiao HH (2012) Saliency-directed color image segmentation using modified particle swarm optimization. Signal Process 92(1):1–18

    Article  Google Scholar 

  27. Liu Z, Shen L, Zhang Z (2011) Unsupervised image segmentation based on analysis of binary partition tree for salient object extraction. Signal Process 91(2):290–299

    Article  MATH  Google Scholar 

  28. Zhu R, Yao M, Liu YM (2011) A two-level strategy for segmenting center of interest from pictures. Expert Syst Appl 38(3):1748–1759

    Article  Google Scholar 

  29. Fu K, Gong C, Yang J, Zhou Y, Gu IYH (2013) Superpixel based color contrast and color distribution driven salient object detection. Signal Process Image Commun 28(10):1448–1463

    Article  Google Scholar 

  30. Vapnik VN (1995) The nature of statistical learning theory. Spring, New York

    Book  MATH  Google Scholar 

  31. Yu Z, Wong HS, Wen G (2011) A modified support vector machine and its application to image segmentation. Image Vis Comput 29(1):29–40

    Article  Google Scholar 

  32. Wang XY, Wang T, Bu J (2011) Color iamge segmentation using pixel wise support vector machine classification. Pattern Recognit 44(4):777–787

    Article  MATH  Google Scholar 

  33. Saha I, Maulik U, Bandyopadhyay S, Plewczynski D (2012) SVMeFC: SVM ensemble fuzzy clustering for satellite image segmentation. IEEE Trans Geosci Remote Sens 9(1):52–55

    Article  Google Scholar 

  34. Zhao Q, Hu Y, Cao J (2009) Automatic image segmentation based on saliency maps and Fuzzy SVM, CCWMC 121–124

  35. Castleman KR (1996) Digital image processing, second ed. Prentice Hall, New York

    Google Scholar 

  36. Wang P, Wang J, Zeng G, Feng J, Zha H, Li S (2012) Salient object detection for searched web images iva global saliency. In CVPR, 3194–3201

  37. Brigger P, Casas JR, Pardas M (1996) Morphological operators for image and video compression. IEEE Trans Image Process 5(6):881–898

    Article  Google Scholar 

  38. Chen TW, Chen YL, Chien SY (2008) Fast image segmentation based on K-means clustering with histograms in HSV color space. IEEE workshop multimed. Signal Proc pp 322–325

  39. Zhang L, Lin FZ, Zhang B A CBIR method based on color-spatial feature, Technical report, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

  40. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability 2:281–297

  41. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  42. Rother C, Kolmogorov V, Blake A (2004) “Grabcut”–interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  43. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27. (http://www.csie.ntu.edu.tw/cjlin/libsvm)

  44. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–943

    Article  Google Scholar 

  45. Meila M (2005) Comparing clusterings: an axiomatic view. ICML 577–584

  46. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, ICCV 416–425

  47. Wang XZ, Dong CR (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3):556–567

    Article  Google Scholar 

  48. Wang XZ, Zhai JH, Lu SX (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inf Sci 178(16):3188–3202

    Article  MATH  MathSciNet  Google Scholar 

  49. Zhai JH, Xu HY, Wang XZ (2012) Dynamic ensemble extreme learning machine based on sample entropy. Soft Comput 16(9):1493–1502

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was partially supported by the National Natural Science Foundation of China (No. 61273291), Research Project Supported by Shanxi Scholarship Council of China (No. 2012-008), Scientific and Technological Project of Shanxi Province (No. 20120321027-01), Open Project Foundation of Information Technology Research Base of Civil Aviation Administration of China (No. CAAC-ITRB-201305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Wang, W. Principal pixel analysis and SVM for automatic image segmentation. Neural Comput & Applic 27, 45–58 (2016). https://doi.org/10.1007/s00521-013-1544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1544-2

Keywords

Navigation