Skip to main content
Log in

Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid cases

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Provisioning a generic simple linear mathematical model for Paranoid and Healthy cases leading to auxiliary investigation of the neuroleptic drugs effect imposed on cardiac output (CO) and blood pressure (BP). Multi-input single output system identification in consistency with the Z-Transform is considered an essential role in the exploration of linear discrete system identification. Twenty Paranoid and 20 Healthy peer cases have been chosen to lie under study. The generated CO model forming two poles and two zeros produced a root–mean-squared error (RMSE) of 0.109 and an average RMSE of 1.39 due to Paranoid cases. On the other hand, Healthy cases obtained model held three poles and two zeros with RMSE equal to 0.17 and an average of 0.63. The BP model with four poles and two zeros showed a 2.15 and 21.69 for RMSE and an average RMSE, respectively, for Paranoid cases, whereas seven poles and two zeros provided an RMSE of 5.7 and an average RMSE of 17.19 for Healthy cases. The obtained results were provided a generic models of CO with promising outcomes for Paranoid and Healthy cases. Moreover, the BP model has less and yet acceptable results in both Paranoid and Healthy cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdelmawla N, Mitchell A (2006) Sudden cardiac death and antipsychotics. Part 2: monitoring and prevention. Adv Psychiatr Treat 12(2):100–109

    Article  Google Scholar 

  2. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36(3):959–969

    Article  Google Scholar 

  3. Andreasen NC, Arndt S, Miller D, Flaum M, Nopoulos P (1995) Correlational studies of the scale for the assessment of negative symptoms and the scale for the assessment of positive symptoms: an overview and update. Psychopathology 28(1):7–17

    Article  Google Scholar 

  4. Anthony GB (1992) Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Weather Forecast 7(4):699–709

    Article  MathSciNet  Google Scholar 

  5. Apple FS, Wu AH (2001) Myocardial infarction redefined: role of cardiac troponin testing. Clin Chem 47(3):377–379

    Google Scholar 

  6. Bai J, Lu H, Zhang J, Zhou X (1997) Simulation study of the interaction between respiration and the cardiovascular system. Methods Inf Med 36(4–5):261–263

    Google Scholar 

  7. Bar KJ, Boettger MK, Koschke M, Schulz S, Chokka P, Yeragani VK, Voss A (2007) Non-linear complexity measures of heart rate variability in acute schizophrenia. Clin Neurophysiol 118(9):2009–2015

    Article  Google Scholar 

  8. Bar KJ, Letzsch A, Jochum T, Wagner G, Greiner W, Sauer H (2005) Loss of efferent vagal activity in acute schizophrenia. J Psychiatr Res 39(5):519–527

    Article  Google Scholar 

  9. Barros AK, Mansour A, Ohnishi N (1998) Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing 22(1–3):173–186

    Article  MATH  Google Scholar 

  10. Belhani D, Frassati D, Megard R, Tsibiribi P, Bui-Xuan B, Tabib A, Fanton L, Malicier D, Descotes J, Timour Q (2006) Cardiac lesions induced by neuroleptic drugs in the rabbit. Exp Toxicol Pathol 57(3):207–212

    Article  Google Scholar 

  11. Brook LH, Arpi M, Martin PP, Mark AG, William P (2010) Heart rate variability in bipolar mania and schizophrenia. J Psychiatr Res 44(3):168–176

    Article  Google Scholar 

  12. Castro MN, Vigo DE, Chu EM, Fahrer RD, de Achával D, Costanzo EY, Leiguarda RC, Nogués M, Cardinali DP, Guinjoan SM (2009) Heart rate variability response to mental arithmetic stress is abnormal in first-degree relatives of individuals with schizophrenia. Schizophr Res 109(1–3):134–140

    Article  Google Scholar 

  13. Coleman TG, Randall JE (1983) HUMAN—a comprehensive physiological model. Physiologist 26(1):15–21

    Google Scholar 

  14. Corinthios MJ (1977) A fast Z Transform algorithm for system identification. IEEE Trans Comput 26(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

  15. Coulter DM, Bate A, Meyboom RH, Lindquist M, Edwards IR (2001) Antipsychotic drugs and heart muscle disorder in international pharmacovigilance: data mining study. BMJ 322(7296):1207–1209

    Article  Google Scholar 

  16. Darpo B (2001) Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. Eur Heart J Suppl 3(Supplement K):K70–K80

    Google Scholar 

  17. Dickinson C (1977) A computer model of human respiration: Ventilation-blood gas transport and exchange hydrogen ion regulation. University Park Press, Baltimore 1977

    Google Scholar 

  18. Erdogan H, Gulal E (2009) Identification of dynamic systems using multiple input-single output (MISO) models. Nonlinear Anal Real World Appl 10(2):1183–1196

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedman BH, Thayer JF (1998) Autonomic balance revisited: panic anxiety and heart rate variability. J Psychosom Res 44(1):133–151

    Article  Google Scholar 

  20. Garcia X, Mateu L, Maynar J, Mercadal J, Ochagavía A, Ferrandiz A (2011) Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring. Med Intensiva 35(9):552–561

    Article  Google Scholar 

  21. Grodins FS (1959) Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q Rev Biol 34(2):93–116

    Article  Google Scholar 

  22. Grodins FS, Gray JS, Schroeder KR, Norins AL, Jones RW (1954) Respiratory responses to CO2 inhalation; a theoretical study of a nonlinear biological regulator. J Appl Physiol 7(3):283–308

    Google Scholar 

  23. Haddad PM, Anderson IM (2002) Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs 62(11):1649–1671

    Article  Google Scholar 

  24. Harrigan EP, Miceli JJ, Anziano R, Watsky E, Reeves KR, Cutler NR, Sramek J, Shiovitz T, Middle M (2004) A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition. J Clin Psychopharmacol 24(1):62–69

    Article  Google Scholar 

  25. Heinrich TW, Biblo LA, Schneider J (2006) Torsades de pointes associated with ziprasidone. Psychosomatics 47(3):264–268

    Article  Google Scholar 

  26. Hennessy S, Bilker WB, Knauss JS, Margolis DJ, Kimmel SE, Reynolds RF, Glasser DB, Morrison MF, Strom BL (2002) Cardiac arrest and ventricular arrhythmia in patients taking antipsychotic drugs: cohort study using administrative data. BMJ 325(7372):1070–1071

    Article  Google Scholar 

  27. Henry BL, Minassian A, Paulus MP, Geyer MA, Perry W (2010) Heart rate variability in bipolar mania and schizophrenia. J Psychiatr Res 44(3):168–176

    Article  Google Scholar 

  28. Heymann S, Latapy M, Magnien C (26–29 August 2012) Outskewer: using skewness to spot outliers in samples and time series. Advances in social networks analysis and mining (ASONAM), 2012 IEEE/ACM international conference, Istanbul, pp 527–534

  29. Huang N, Attoh-Okine NO (2005) The Hilbert-Huang transform in engineering, chapter 1. Taylor & Francis Group, LLC publisher, Boca Raton, pp 1–22

  30. Karavidas MK, Lehrer PM, Vaschillo E, Vaschillo B, Marin H, Buyske S, Malinovsky I, Radvanski D, Hassett A (2007) Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback 32(1):19–30

    Article  Google Scholar 

  31. Khoo MC, Gottschalk A, Pack AI (1991) Sleep-induced periodic breathing and apnea: a theoretical study. J Appl Physiol 70(5):2014–2024

    Google Scholar 

  32. Khoo MC, Yamashiro SM (1989) Models of control of breathing. In: Chang HK, Pavia M (eds) Respiratory physiology: an analytical approach. Marcel Dekker, New York, pp 799–829

  33. Kirkman E, Sawdon M (2010) Neurological and humoral control of blood pressure. Anaesth Intensive Care Med 11(5):159–164

    Article  Google Scholar 

  34. Kongsamut S, Kang J, Chen XL, Roehr J, Rampe D (2002) A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol 450(1):37–41

    Article  Google Scholar 

  35. Koulocheris D, Dertimanis V, Vrazopoulos H (2004) Evolutionary parametric identification of dynamic systems. Forsch Ingenieurwes 68(4):173–181

    Article  Google Scholar 

  36. Kuhlman K (2001) Importance of autocorrelation for parameter estimation in regression models. In: The 10th international symposium on deformation measurements, March 19–21, 2001, California

  37. Kurzthaler I, Fleischhacker WW (2001) The clinical implications of weight gain in schizophrenia. J Clin Psychiatry 62(suppl 7):32–37

    Google Scholar 

  38. Lee MY, Yu SN (August 31 2010–September 4 2010) Improving discriminality in heart rate variability analysis using simple artifact and trend removal preprocessors. In: Conference proceedings of the IEEE engineering in medicine and biology society, Buenos Aires, Argentina, pp 4574–4577

  39. Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO, Kreyenbuhl J (2004) Practice guidelines for the treatment of patients with schizophrenia second edition. APA Pract Guidel. doi:10.1176/appi.books.9780890423363.45859

    Google Scholar 

  40. Liang FY, Liu H (2006) Simulation of hemodynamic responses to the Valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci 56(1):45–65

    Article  MathSciNet  Google Scholar 

  41. Liberatore MA, Robinson DS (1984) Torsade de pointes: a mechanism for sudden death associated with neuroleptic drug therapy? J Clin Psychopharmacol 4(3):143–146

    Article  Google Scholar 

  42. Lieberman J, Stroup TS, Mcevoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. doi:10.1056/NEJMoa051688

    Google Scholar 

  43. Limei C, Olga I, Hsing-Hua F, Michael CKK (2010) An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respir Physiol Neurobiol 174(1–2):4–28

    Google Scholar 

  44. Lind DA, Marchal WG, Wathen SA (2006) Basic statistics for business & economics, chapter 4, 5th edn. McGraw-Hill Companies, Asia, pp 100–119

  45. Lu K, Clark JW Jr, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol 281(6):H2661–H2679

    Google Scholar 

  46. Mackin P (2008) Cardiac side effects of psychiatric drugs. Hum Psychopharmacol 23(1):3–14

    Article  Google Scholar 

  47. Madwed JB, Albrecht P, Mark RG, Cohen RJ (1989) Low-frequency oscillations in arterial pressure and heart rate: a simple computer model. Am J Physiol 256(6 Pt 2):H1573–H1579

    Google Scholar 

  48. Magyar J, Bányász T, Bagi Z, Pacher P, Szentandrássy N, Fülöp L, Kecskeméti V, Nánási PP (2002) Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn Schmiedebergs Arch Pharmacol 366(4):350–356

    Article  Google Scholar 

  49. Malik M (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17(3):354–381

    Article  Google Scholar 

  50. McCulloch A, Bassingthwaighte J, Hunter P, Noble D (1998) Computational biology of the heart: from structure to function. Prog Biophys Prog Biophys Mol Biol 69(2–3):153–155

    Google Scholar 

  51. McKinney PE, Rasmussen R (2003) Reversal of severe tricyclic antidepressant-induced cardiotoxicity with intravenous hypertonic saline solution. Ann Emerg Med 42(1):20–24

    Article  Google Scholar 

  52. Meijering E (2002) A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proc IEEE 90(3):319–342. doi:10.1109/5.993400

    Article  Google Scholar 

  53. Merrill DB, Dec GW, Goff DC (2005) Adverse cardiac effects associated with clozapine. J Clin Psychopharmacol 25(1):32–41

    Article  Google Scholar 

  54. Mijovi B, De Vos M, Gligorijevi I, Taelman J (2010) Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans Biomed Eng 57(9):2188–2196

    Article  Google Scholar 

  55. Milhorn HT, Benton R, Ross R, Guyton AC (1965) A mathematical model of the human respiratory control system. Biophys J 5(1):27–46

    Article  Google Scholar 

  56. Murphy CA, Dargie HJ (2007) Drug-induced cardiovascular disorders. Drug Saf 30(9):783–804

    Article  Google Scholar 

  57. Excellence, N. I. f. C (2002) Guidance on the use of newer (atypical) antipsychotic drugs for the treatment of schizophrenia. IOP Publishing Physics. http://www.nice.org.uk/nicemedia/pdf/ANTIPSYCHOTICfinalguidance.pdf. Accessed May 2005

  58. Nupura K, Beth LA, Robert C, Lawrence AL, Sarah H, Robert S, Moumita B, Susan S, Ahmed M, Mark P, Laura RP, Lori W, Tammy S, Adam L, Casimir S, Shree B (2008) Atypical antipsychotics, schizophrenia, and cardiovascular risk: what family physicians need to know. BCMJ 50(8):444–450

    Google Scholar 

  59. Ogata K (2002) Modern control engineering, chapter 8, 4th edn. Prentice Hall, New Jersey, pp 471–542

  60. Pennock B, Attinger EO (1968) Optimization of the oxygen transport system. Biophysics 8(8):879–896

    Google Scholar 

  61. Poulin MJ, Cortese L, Williams R, Wine N, McIntyre RS (2005) Atypical antipsychotics in psychiatric practice: practical implications for clinical monitoring. Can J Psychiatry 50:555–562

    Google Scholar 

  62. Ray WA, Meredith S, Thapa PB, Meador KG, Hall K, Murray KT (2001) Antipsychotics and the risk of sudden cardiac death. Arch Gen Psychiatry 58(12):1161–1167

    Article  Google Scholar 

  63. Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas HL (2000) QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 355(9209):1048–1052

    Article  Google Scholar 

  64. Reilly JG, Ayis SA, Ferrier IN, Jones SJ, Thomas SH (2002) Thioridazine and sudden unexplained death in psychiatric inpatients. Br J Psychiatry 180(6):515–522

    Article  Google Scholar 

  65. Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350(10):1013–1022

    Article  Google Scholar 

  66. Saini BS, Singh D, Uddin M, Kumar V (2008) Improved power spectrum estimation for RR-interval time series. World Academy of Science, Engineering and Technology. International Science Index 22. 22:43–48

  67. Schuppen J (2004) System theory for system identification. J Econom 118(1–2):313–339

    Article  MATH  Google Scholar 

  68. Silke B, Campbell C, King DJ (2002) The potential cardiotoxicity of antipsychotic drugs as assessed by heart rate variability. J Psychopharmacol 16(4):355–360

    Article  Google Scholar 

  69. Sjoberg J, Zhang Q, Ljung L, Benveniste A, Delyon B, Glorennec PY, Hjalmarsson H, Juditsky A (1995) Non-linear black-box modeling in system identification a unified overview. Auromarica 31(12):1691–1724

    MathSciNet  Google Scholar 

  70. Stephen B, Olubanke O, David T (2007) Which antipsychotics would mental health professionals take themselves? The Psychiatrist 31:94–96. doi:10.1192/pb.bp.106.012955

    Google Scholar 

  71. Stephenson R (2004) A theoretical study of the effect of circadian rhythms on sleep-induced periodic breathing and apnoea. Respir Physiol Neurobiol 139(3):303–319

    Article  Google Scholar 

  72. Straus SM, Bleumink GS, Dieleman JP, van der Lei J, Jong GW, Kingma JH, Sturkenboom MC, Stricker BH (2004) Antipsychotics and the risk of sudden cardiac death. Arch Intern Med 164(12):1293–1297

    Article  Google Scholar 

  73. Tawhai MH, Hunter P, Tschirren J, Reinhardt J, McLennan G, Hoffman EA (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97(6):2310–2321

    Article  Google Scholar 

  74. Tei Y, Morita T, Inoue S, Miyata H (2004) Torsades de pointes caused by a small dose of risperidone in a terminally ill cancer patient. Psychosomatics 45(5):450–451

    Article  Google Scholar 

  75. Thomas SH (1994) Drugs, QT interval ab normalities and ventricular arrhythmias. Adverse Drug React Toxicol Rev 13(2):77–102

    Google Scholar 

  76. Troy CR (2012) Data acquisition applications. In: Tech, Coroatia, chapter 3. ISBN:978-953-51-0713-2

  77. Ursino M, Magosso E (2003) Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J Integr Neurosci 2(2):219–247

    Article  Google Scholar 

  78. Valkonen-Korhonen M, Tarvainen MP, Ranta-Aho P, Karjalainen PA, Partanen J, Karhu J, Lehtonen J (2003) Heart rate variability in acute psychosis. Psychophysiology 40(5):716–726

    Article  Google Scholar 

  79. Vieweg WV, Schneider RK, Wood MA (2005) Torsade de pointes in a patient with complex medical and psychiatric conditions receiving low-dose quetiapine. Acta Psychiatr Scand 112(4):318–322

    Article  Google Scholar 

  80. Wayne AR, Cecilia PC, Katherine TM, Kathi H, Michael S (2009) Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med 360:225–235. doi:10.1056/NEJMoa0806994

    Article  Google Scholar 

  81. Zarate CA Jr, Patel J (2001) Sudden cardiac death and antipsychotic drugs. Arch Gen Psychiatry 58(12):1168–1171

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to express my deepest sense of Gratitude to Prof. Karl-Jürgen Bär, Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Jena, Dr. S. Berger, Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Jena, who provided us with the valuable Healthy and Paranoid cases of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar.

Appendix

Appendix

See Tables 2, 3, 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboamer, M.A., Azar, A.T., Wahba, K. et al. Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid cases. Neural Comput & Applic 25, 1223–1240 (2014). https://doi.org/10.1007/s00521-014-1566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1566-4

Keywords

Navigation