Skip to main content
Log in

Global attractive sets of a novel bounded chaotic system

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the boundedness of solutions of a new chaotic system. For this system, the global exponential attractive set and positively invariant set are derived based on generalized Lyapunov function theory and the extremum principle of function. Furthermore, we can conclude that the rate of the trajectories of the system going from the exterior of the attractive set Φ λ to the interior of the attractive set Φ λ is an exponential rate. The rate of the trajectories is also obtained. Numerical simulations are presented to show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lorenz EN (1963) Deterministic non-periods flows. J Atmos Sci 20:130–141

    Article  Google Scholar 

  2. Kuznetsov NV, Mokaev TN, Vasilyev PA (2014) Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun Nonlinear Sci Numer Simul 19(4):1027–1034

    Article  MathSciNet  Google Scholar 

  3. Leonov GA (2001) Bounds for attractors and the existence of homoclinic orbits in the Lorenz system. J Appl Math Mech 65(1):19–32

    Article  MathSciNet  Google Scholar 

  4. Hu J, Chen SH, Chen L (2005) Adaptive control for anti-synchronization of Chua’s chaotic system. Phys Lett A 339(6):455–460

    Article  MATH  Google Scholar 

  5. Leonov G, Bunin A, Koksch N (1987) Attractor localization of the Lorenz system. Z Angew Math Mech 67:649–656

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G, Lü J (2003) Dynamical analysis, control and synchronization of the Lorenz systems family. Science Press, Beijing

    Google Scholar 

  7. Leonov G (2012) General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys Lett A 376:3045–3050

    Article  MathSciNet  MATH  Google Scholar 

  8. Bragin V, Vagaitsev V, Kuznetsov N, Leonov G (2011) Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. J Comput Syst Sci Int 50:511–543

    Article  MathSciNet  MATH  Google Scholar 

  9. Leonov G, Kuznetsov N (2013) Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos Appl Sci Eng 23:1330002

    Article  MathSciNet  Google Scholar 

  10. Leonov GA, Kuznetsov NV, Kiseleva MA, Solovyeva EP, Zaretskiy AM (2014) Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. doi:10.1007/s11071-014-1292-6

    MATH  Google Scholar 

  11. Liu HJ, Wang XY, Zhu QL (2011) Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys Lett A 375(30–31):2828–2835

    Article  MATH  Google Scholar 

  12. Wang P, Li D, Wu X, Lü J, Yu X (2011) Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int J Bifurc Chaos Appl Sci Eng 21:2679–2694

    Article  MATH  Google Scholar 

  13. Wang XY, Wang MJ (2008) A hyperchaos generated from Lorenz system. Physica A Stat Mech Appl 387(14):3751–3758

    Article  Google Scholar 

  14. Wang XY, Wang MJ (2007) Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos An Interdiscip J Nonlin Sci 17(3):033106

    Article  Google Scholar 

  15. Wang XY, Song JM (2009) Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun Nonlinear Sci Numer Simul 14(8):3351–3357

    Article  MATH  Google Scholar 

  16. Wang XY, He YJ (2008) Projective synchronization of fractional order chaotic system based on linear separation. Phys Lett A 372(4):435–441

    Article  MATH  Google Scholar 

  17. Juan M, Wang XY (2008) Generalized synchronization via nonlinear control. Chaos An Interdiscip J Nonlin Sci 18(2):023108

    Article  MathSciNet  Google Scholar 

  18. Luo C, Wang XY (2008) Dynamics of random boolean networks under fully asynchronous stochastic update based on linear representation. PLoS ONE 8(6):e66491

    Article  Google Scholar 

  19. Zhang F, Shu Y, Yang H, Li X (2011) Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization. Chaos, Solitons Fractals 44:137–144

    Article  MATH  Google Scholar 

  20. Zhang F, Mu C, Li X (2012) On the boundedness of some solutions of the Lü system. Int J Bifurc Chaos Appl Sci Eng 22:1250015

    Article  MathSciNet  Google Scholar 

  21. Zhang F, Li Y, Mu C (2013) Bounds of solutions of a kind of hyper-chaotic systems and application. J Math Res Appl 33(3):345–352

    MathSciNet  MATH  Google Scholar 

  22. Zhang F, Shu Y, Yao X (2013) The dynamical analysis of a disk dynamo system and its application in chaos synchronization. Acta Math Appl Sin 36(2):193–203

    MathSciNet  MATH  Google Scholar 

  23. Zhang F, Mu C et al (2013) The dynamical analysis of a new chaotic system and simulation. Math Methods Appl Sci. http://dx.doi.org/10.1002/mma.2939

  24. Zhang F, Shu Y, Yang H (2011) Bounds for a new chaotic system and its application in chaos synchronization. Commun Nonlinear Sci Numer Simul 16:1501–1508

    Article  MathSciNet  MATH  Google Scholar 

  25. Liao X, Fu Y, Xie S, Yu P (2008) Globally exponentially attractive sets of the family of Lorenz systems. Sci China Ser F 51:283–292

    Article  MathSciNet  MATH  Google Scholar 

  26. Pogromsky A, Santoboni G, Nijmeijer H (2003) An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity 16:1597–1605

    Article  MathSciNet  MATH  Google Scholar 

  27. Algaba A, Fernandez-Sanchez F, Merino M et al (2013) Chen’s attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. Chaos An Interdiscip J Nonlin Sci 23(3):033108

    Article  Google Scholar 

  28. Chen GR (2013) The Chen system revisited. Dyn Contin Discret Impuls Syst 20:691–696

    MATH  Google Scholar 

  29. Chen YM, Yang QG (2013) The nonequivalence and dimension formula for attractors of Lorenz-type systems. Int J Bifurc Chaos Appl Sci Eng 23(12):1350200

    Article  Google Scholar 

  30. Algaba A, Fernandez-Sanchez F, Merino M et al (2013) The Lu system is a particular case of the Lorenz system. Phys Lett A 377(39):2771–2776

    Article  MathSciNet  Google Scholar 

  31. Tang L, Fan B, Kang Z (2012) A chaos synchronization method based on amplitude. Acta Phys Sin 61(8):1–5

    Google Scholar 

  32. Leonov G, Kuznetsov N, Vagaitsev V (2011) Localization of hidden Chua’s attractors. Phys Lett A 375:2230–2233

    Article  MathSciNet  MATH  Google Scholar 

  33. Leonov G, Boichenko V (1992) Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl Math 26:1–60

    Article  MathSciNet  MATH  Google Scholar 

  34. Leonov G, Ponomarenko D, Smirnova V (1996) Frequency domain methods for nonlinear analysis: theory and applications. World Scientific, Singapore

    MATH  Google Scholar 

  35. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos Appl Sci Eng 9:1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  36. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos Appl Sci Eng 12:659–661

    Article  MATH  Google Scholar 

  37. Lü J, Chen G (2006) Generating multi-scroll chaotic attractors: theories, methods and applications. Int J Bifurc Chaos Appl Sci Eng 16:775–858

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Talents Project of Sichuan University of Science and Engineering (No. 2011RC07), the Key Project of Artificial Intelligence Key Laboratory of Sichuan Province (No. 2011RZJ02), the Science and Technology Key Project of Zigong (No. 2012D09), the Cultivation Project of Sichuan University of Science and Engineering (No. 2012PY19), the National Natural Science Foundation of China (Grant No: 11301570), the Basic and Advanced Research Project of CQCSTC (Grant No: cstc2013jcyjA00003), the China Postdoctoral Science Foundation funded project (Grant No: 2013M540697) and the Research Fund of Chongqing Technology and Business University (Grant No: 2013-56-03). The authors are grateful to thank the anonymous referees and editors for their valuable comments and suggestions. Without their constructive comments, the paper would not be at current quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, G., Lin, D. et al. Global attractive sets of a novel bounded chaotic system. Neural Comput & Applic 25, 1177–1183 (2014). https://doi.org/10.1007/s00521-014-1601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1601-5

Keywords

Navigation