Skip to main content
Log in

Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A previously presented neural network-based thermodiffusion model that was valid for n-alkane type components has been extended to predict the thermo-solutal diffusion in an arbitrary binary hydrocarbon mixture. The enhanced model uses additional input information about the binary system and is based on a significantly large database of thermodiffusion data. Apart from the development and validation with respect to an extensive set of experimental data on the binary mixtures from the literature, the ability of the model to predict the known thermodiffusion trends has been demonstrated. The model can be potentially extended to multi-component mixtures and for any type of mixture, viz., polymers, molten metals, water-alcohol, colloidal mixtures etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Artola PA, Rousseau B (2007) Microscopic interpretation of a pure chemical contribution to the soret effect. Phys Rev Lett 98:125,901

    Article  Google Scholar 

  2. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Bioanal Chem 49:2238–2241

    Google Scholar 

  3. Bacri AC, Cebers A, Bourdon A, Demouchy G, Heegaard BM, Perzynski R (1995) Forced rayleigh experiment in a magnetic fluid. Phys Rev Lett 74(25):5032–5035

    Article  Google Scholar 

  4. Blanco P, Bou-Ali M, Platten JK, Madariaga JA, Urteaga P, Santamaria C (2007) Thermodiffusion coefficient for binary liquid hydrocarbon mixtures. J Non-Equilib Thermodyn 32:309–317. doi:10.1515/JNETDY.2007.023

    Article  Google Scholar 

  5. Blanco P, Bou-Ali M, Platten JK, de Mezquia DA, Madariaga JA, Santamaria C (2010) Thermodiffusion coefficients of binary and ternary hydrocarbon mixtures. J Chem Phys 132:114,506. doi:10.1063/1.3354114

    Article  Google Scholar 

  6. Blanco P, Bou-Ali M, Platten JK, Urteaga P, Madariaga JA, Santamaria C (2008) Determination of thermal diffusion coefficient in equimolar n-alkane mixtures: empirical correlations. J Chem Phys 129:174,504. doi:10.1063/1.2945901

    Article  Google Scholar 

  7. Blanco P, Polyakov P, Bou-Ali M, Wiegand S (2008) Thermal diffusion and molecular diffusion values for some alkane mixtures: a comparison between thermogravitational column and thermal diffusion forced rayleigh scattering. J Phys Chem 112(28):8340–8345. doi:10.1021/jp801894b

    Article  Google Scholar 

  8. Blums E (2005) New transport properties of ferrocolloids: magnetic soret effect and thermomagnetoosmosis. J Magn Magn Mater 289:246–249

    Article  Google Scholar 

  9. Bou-Ali MM, Valencia JJ, Madariaga JA, Santamaria CM, Ecennaro O, Dutrieux JF (2003) Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method (contribution of the univesidad del paś vasco bilbao, to the benchmark test). Philos Mag 83(17–18):2011–2015

    Article  Google Scholar 

  10. Braun D, Arduini S, Duhr S (2004) Thermophoresis of dna determined by microfluidic fluorescence. Eur Phys J 15:277–286

    Google Scholar 

  11. Brenner H (2010) Self-thermophores and thermal self-diffusion in liquids and gases. Phys Rev E 82:036,325

    Article  Google Scholar 

  12. Cölfen H, Antonietti M (2000) Field-flow fractionation techniques for polymer and colloid analysis. In: New developments in polymer analytics I, advances in polymer science, vol 157. Springer, Berlin, pp 67–187

  13. Costeséque P, Loubet JC (2003) Measuring the soret coefficient of binary hydrocarbon mixtures in packed thermogravitational columns (contribution of toulouse university to the benchmark test). Philos Mag 83(17–18):2017–2022

    Article  Google Scholar 

  14. Debuschewitz C, Köhler W (2001) Molecular origin of thermal diffusion in benzene+cyclohexane mixtures. Phys Rev Lett 87:055,901

    Article  Google Scholar 

  15. Galliero G, Srinivasan S, Saghir MZ (2010) Estimation of thermodiffusion in ternary alkane mixtures using molecular dynamics and the irreversible thermodynamic theory. High Temp High Press 38:315–328

    Google Scholar 

  16. Ghorayeb K, Firoozabadi A (2000) Molecular, pressure, and thermal diffusion in non-ideal multicomponent mixtures. AIChE J 46(5):883–891. doi:10.1002/aic.690460503

    Article  Google Scholar 

  17. Gregg M (1973) The microstructure of the ocean. Sci Am 228:65–77

    Article  Google Scholar 

  18. Ham FM, Kostanic I (2001) Principles of neurocomputing for science and engineering, 2nd edn. McGraw Hill, New York

    Google Scholar 

  19. Hartung M, Köhler W (2007) Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures. Rev Sci Instrum 78:84,901

    Article  Google Scholar 

  20. Khawaja M, Jiang CG, Van Vaerenbergh S, Saghir MZ (2005) Theoretical analysis and comparison with experimentation of the molecular and thermal diffusion coefficients for a ternary hydrocarbon mixture. J Non-Equilib Thermodyn 30:359–374

    Article  MATH  Google Scholar 

  21. Lange A (2004) Magnetic soret effect: application of the ferrouid dynamics theory. Phys Rev E 70:46,308

    Article  Google Scholar 

  22. Leahy-Dios A, Bou-Ali MM, Platten JK, Firoozabadi A (2005) Measurements of molecular and thermal diffusion coefficients in ternary mixtures. J Chem Phys 122:234,502. doi:10.1063/1.1924503

    Article  Google Scholar 

  23. Leahy-Dios A, Firoozabadi A (2007) Molecular and thermal diffusion coefficients of alkane–alkane and alkane-aromatic binary mixtures: effect of shape and size of molecules. J Phys Chem B 111(1):191–198. doi:10.1021/jp064719q

    Article  Google Scholar 

  24. Leahy-Dios A, Firoozabadi A (2008) New thermal diffusion coefficient measurements for hydrocarbon binary mixtures: viscosity and composition dependency. J Phys Chem B 112(20):6442–6447

    Article  Google Scholar 

  25. Leppla C, Wiegand S (2003) Investigation of the soret effect in binary liquid mixtures by thermal-diffusion-forced rayleigh scattering (contribution to the benchmark test). Philos Mag 83(17–18):1989–1999

    Article  Google Scholar 

  26. Madariaga JA, Santamaria C, Bou-Ali M, Urteaga P, De Mezquia DA (2010) Measurement of thermodiffusion coefficient in n-alkane binary mixtures: composition dependence. J Phys Chem B 114:6937–6942. doi:10.1021/jp910823c

    Article  Google Scholar 

  27. Martin A, Bou-Ali MM (2011) Determination of thermal diffusion coefficient of nanofluid: fullerenetoluene. C R Mecanique 339:329–334

    Article  Google Scholar 

  28. Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural network by chosing initial values of the adaptive weights. Proceedings of the international joint conference on neural networks 3:21–26

    Google Scholar 

  29. NIST (2007) Thermophysical properties of hydrocarbon mixtures database. National Institute of Standards and Technology, Version 3.2

  30. Perronace A, Leppla C, Leroy F, Rousseau B, Wiegand S (2002) Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane–n-decane mixtures. J Chem Phys 116:3718–3729

    Article  Google Scholar 

  31. Pham QT (2006) Modeling heat and mass transfer in frozen foods: a review. Int J Refrig 29:876–888

    Article  Google Scholar 

  32. Platten JK, Bou-Ali MM, Costeséque P, Dutrieux J, Köhler W, Leppla C, Wiegand S, Wittko G (2003) Benchmark values for the soret, thermal diffusion and diffusion coefficients of three binary organic liquid mixtures. Philos Mag 83:1965–1971

    Article  Google Scholar 

  33. Platten JK, Bou-Ali MM, Dutrieux J (2003) Precise determination of the soret, thermodiffusion and isothermal diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene. Philos Mag 83(17–18):2001–2010

    Article  Google Scholar 

  34. Reineck P, Wienken CJ, Braun D (2010) Thermophoresis of single stranded DNA. Electrophoresis 31:279–286

  35. Schimpf ME (2000) Thermal field-flow fractionation. In: Schimpf ME, Caldwell KD, Giddings JC (eds) F.F.F. handbook. Wiley, New York, pp 239–256

  36. Sidhu G, Bhole SD, Chen DL, Essadiqi E (2011) Determination of volume fraction of bainite in low carbon steels using artificial neural networks. Comput Mater Sci 50(12):3377–3384

    Article  Google Scholar 

  37. Sidhu G, Bhole SD, Chen DL, Essadiqi E (2012) Development and experimental validation of a neural network model for prediction and analysis of the strength of bainitic steels. Comput Mater Sci. doi:10.1016/j.matdes.2012.04.027

  38. Spiegel EA (1972) Convection in stars-ii: special effects. Ann Rev Astron Astrophys 10:261–304

    Article  Google Scholar 

  39. Srinivasan S (2006) Computational optimization of diesel engines to minimize specific fuel consumption and emissions. Ph.D. thesis, Michigan Technological University

  40. Srinivasan S, Dejmeck M, Saghir MZ (2010) Thermo-solutal-diffusion in high pressure liquid mixtures in the presence of micro-vibrations. Int J Therm Sci 49:1613–1624

    Article  Google Scholar 

  41. Srinivasan S, de Mezquia DA, Bou-Ali MM, Saghir MZ (2011) Thermodiffusion and molecular diffusion in binary n-alkane mixtures: experiments & numerical analysis. Philos Mag 91(34):4332–4344

    Article  Google Scholar 

  42. Srinivasan S, Saghir MZ (2011) Thermodiffusion of ternary hydrocarbon mixtures: part 1 - n-dodecane/isobutylbenzene/tetralin. J Non-Equilib Thermodyn 36:243–258

    Article  MATH  Google Scholar 

  43. Srinivasan S, Saghir MZ (2012) A neurocomputing model to calculate the thermo-solutal diffusion in liquid hydrocarbon mixtures. Neural Comput Appl 1–13. doi:10.1007/s00521-012-1217-6

  44. Srinivasan S, Saghir MZ (2013) Modeling of thermotransport phenomenon in metal alloys using artificial neural networks. App Math Model 37:2539–2850. doi:10.1016/j.apm.2012.06.018

    Article  MathSciNet  Google Scholar 

  45. Tanner FX, Srinivasan S (2009) Cfd-based optimization of fuel injection strategies in a diesel engine using an adaptive gradient method. App Math Model 33(3):1366–1385

    Article  MathSciNet  MATH  Google Scholar 

  46. Urtaega P, Bou-Ali M, de Mezquia DA, Santamaria J, Santamaria C, Madariaga JA, Bataller H (2012) Measurement of thermodiffusion coefficient of hydrocarbon binary mixtures under pressure with the thermogravitational technique. Rev Sci Instrum 83:74,903

    Article  Google Scholar 

  47. Van Vaerenbergh S, Srinivasan S, Saghir MZ (2009) Thermodiffusion in multi-component hydrocarbon mixtures: experimental investigations and computational analysis. J Chem Phys 131:114,505

    Article  Google Scholar 

  48. Würger A (2009) Molecular-weight dependent thermal diffusion in dilute polymer solutions. Phys Rev Lett 102:78,302

    Article  Google Scholar 

  49. Weinberger W (1964) The physics of the solar pond. Solar Energ 8:45–56

    Article  Google Scholar 

  50. Wittko G, Köhler W (2003) Precise determination of the soret, thermal diffusion and mass diffusion coefficients in binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene by a holographic grating technique. Philos Mag 83(17–18):1973–1987

    Article  Google Scholar 

  51. Yan Y, Blanco P, Saghir MZ, Bou-Ali M (2008) An improved theoretical model for thermodiffusion coefficient in liquid hydrocarbon mixtures: comparison between experimental and numerical results. J Chem Phys 129:194,507. doi:10.1063/1.2976012

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Canadian Space Agency, the European Space Agency and Natural Sciences and Engineering Research Council of Canada for funding this work. We are also grateful to the reviewers for their valuable criticism and suggestions that has enabled us to improve the work to its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshasai Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Saghir, M.Z. Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks. Neural Comput & Applic 25, 1193–1203 (2014). https://doi.org/10.1007/s00521-014-1603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1603-3

Keywords

Navigation