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Abstract In this study, a comprehensive methodology for
overcoming the design problem of the Fuzzy ARTMAP
neural network is proposed. The issues addressed are the
sequence of training data for supervised learning and
optimum parameter tuning for parameters such as baseline
vigilance. A genetic algorithm search heuristic was chosen
to solve this multi-objective optimization problem. To
further augment the ARTMAP’s pattern classification
ability, multiple ARTMAPs were optimized via genetic
algorithm and assembled into a classifier ensemble. An
optimal ensemble was realized by the inter-classifier
diversity of its constituents. This was achieved by miti-
gating convergence in the genetic algorithms by employing
a hierarchical parallel architecture. The best-performing
classifiers were then combined in an ensemble, using
probabilistic voting for decision combination. This study
also integrated the disparate methods to operate within a
single framework, which is the proposed novel method for
creating an optimum classifier ensemble configuration with
minimum user intervention. The methodology was bench-
marked using popular data sets from UCT machine leaming
repository.
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1 Introduction

Fuzzy ARTMAP (FAM) neural networks [1] are com-
monly used for pattern classification problems. Under a
supervised learning condition, the FAM is able to form
complex correlations between a given multi-dimensional
input or exemplars and a multi-dimensional output or
category labels. However, the classification accuracy is
dependent on the parameter settings and the order in which
exemplars were presented during supervised leaming.
Finding a combination of parameters that will yield the best
classification performance is essentially an optimization
task.

FAM have been used in a wide range of applications. In
fault diagnosis of rolling element bearings, a FAM
ensemble based on the improved Bayesian belief method is
used [2]. A Gaussian ARTMAP model is proposed by
Mokhtar et al. [3] for building better and more efficient
energy management systems. Simplified FAM model is
used in detecting faults of induction motor, with the inputs
of transient current signals [4]. A FAM neural network is
employed by Liang et al. [5] in classifying and grading
yam surface qualities with satisfactory performance. For
fault detection and diagnosis in a power generation plant, a
FAM network with evolutionary programming is proposed,
with consistent experimental results [6].

The FAM optimization task is required to explore sev-
eral different characteristics for optimum classifier perfor-
mance. The parameter settings of the FAM control the
fundamental architecture of the classifier and affect its
ability to learn patterns during the training process.



In addition, the internal knowledge base of the FAM grows
and changes shape with each additional exemplar presented
to the neural network during training. A biased training
sequence, or one which involves poorly defined exemplars,
may affect the FAM’s classification ability. The neural
network is somewhat able to compensate for the sequenc-
ing problem if the exemplars are presented repeatedly
during training [7], but the problem will be accumulative
for FAM classifiers relying on online learning. A number
of methods were proposed for overcoming the shortfalls of
the FAM, such as parameter tuning [8-11], ensemble
learning [12, 13], or by modifying the neural network
architecture to create variants of the FAM [7, 14-17].

Using the FAM neural network, the proposed frame-
work consisted of the following methods; given a classi-
fication task with a data set of pattern examples, parameter
tuning was performed, using genetic algorithms (GA) to
search for effective combinations of parameters and train-
ing sequence for creating a trained FAM classifier. The GA
is able to converge onto optimal points in the search space
through competitive eliminations and refining the search in
between the surviving candidates. With the goal of devel-
oping an ensemble of classifiers, the role of the GA in this
framework was to generate and iteratively evolve a popu-
lation of FAMSs not only for improved classification accu-
racy, but for diversity between individual classifiers.
Traditional single-population GA have a tendency to con-
verge on a single optimum point, mainly due to the elitist
selection process. Convergence in this case is undesirable
due to the intention to create a classifier ensemble.

Ensemble learning has recently gained much attention in
various learning tasks such as classification, clustering, and
regression problems [18]. A hybrid model consisting of
Fuzzy Min-Max (FMM) neural network and the random
forest (RF) model, comprising an ensemble of classifica-
tion and regression trees (CART) for condition monitoring
of induction motors is developed by Seera et al. [19]. Using
a similar model, FMM, CART, and RF ensemble is used in
three benchmark medical data sets. with positive outcome
from the experiments [20]. An artificial neural network
ensemble, composed using a multi-class classifier is used
for traffic sign recognition and hand-written digit recog-
nition, with good results [21].

The rationale for an ensemble is to combine complemen-
tary information from multiple diverse classifiers to achieve a
classification accuracy higher than any individual classifier. A
variant GA known as hierarchical fair-competition parallel
genetic algorithms (HFCPGA) was proposed in [22], where
genetic convergence was mitigated by distributing chromo-
somes across multiple subpopulations instead of a single
population. The populations are independent of each other and
are arranged in a hierarchy so that candidates will compete
only against other candidates with similar levels of fitness.

Diversity was considered an important factor when
designing ensembles of classifiers. Zenobi and Cunning-
ham [23] discussed the possibility of having an ensemble
of suboptimum classifiers outperforming an ensemble of
optimum classifiers due to successful trade-off between
diversity and accuracy. To ensure the GA generates a
diverse set of FAM configurations, a number of methods
were implemented in the framework such as the HFCPGA
model and feature subset selection. Feature subset selec-
tion, wherein the FAM is trained using only a partial rep-
resentation of the training patterns, would reduce the
complexity of the resultant trained FAM, otherwise known
as the problem of “overfitting” [24]. Thus, instead of
having an ensemble of overfitted classifiers, the ensemble
would consist of classifiers that were each trained on a
small subset of the training data set. Several studies showed
the advantages of an ensemble of diverse and specialized
FAMs trained using feature-selected data sets [25-28]. For
this framework, feature subsets generated by the GA would
be used to filter the training data set before being used for
training the FAM.

Having generated a diverse population of FAMs, an
ensemble was created using classifiers with the best clas-
sification accuracy. The final ensemble will be integrated
by means of a probabilistic voting strategy [29, 30] that
assigns each classifier with a reliability index and skewing
ensemble decisions in favor of high-reliability classifiers
while reducing the voting weights of classifiers with poor
accuracy. When classifying an object, the reliability of the
classification was computed from the probabilistic output
from each classifier. This adds a new dimension to classi-
fication output from the ensemble, in which reliability
represents the “confidence™ of the ensemble in its
prediction.

Similar research has been conducted in the various lit-
eratures. Radtke et al. [31] proposed a similar two-step
method for optimizing classifier training using feature
subsets, and for crafting ensembles of classifiers, both
using different evolutionary algorithm methodologies.
Using an automated method for selecting classifiers for an
ensemble may be considered for future development of our
existing framework. Ishibuchi et al.’s methodology for
generating ensembles of fuzzy rule-based classifiers [32]
utilized a multi-objective GA for finding Pareto-optimum
combinations of accuracy, and size and complexity of the
fuzzy rule sets, whereas the method proposed in this study
selected the FAMs which showcased the highest classifi-
cation accuracy regardless of the internal configuration.

In this work, the FAM classifier requires training
sequence and parameter optimization to perform with peak
accuracy. A GA was suggested for this task, using a hier-
archical and parallelized architecture to reduce homoge-
neity and to distribute convergence over multiple points.
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A population of optimal FAMs was generated, from which
an ensemble of classifiers was created. Ensemble decision
was based on probabilistic voting of the individual classi-
fiers, weighted according to each FAMs reliability. The
framework was proposed as an automated method for
generating an ensemble of trained FAM classifiers for a
given pattern classification task with consistently high
accuracy. The workings of the FAM classifier, the genetic
optimization methods, and the probabilistic voting scheme
is detailed in Sect. 2. Section 3 details the experimental
setup, where several data sets were used for benchmark.
Results and discussions are included in Sect. 4. Concluding
remarks is given in Sect. 5.

2 Description of framework

The proposed framework for generating an optimized
ensemble of classifiers consist of three parts: classifier
optimization, ensemble creation, and classifier combina-
tion, as illustrated in Fig. 1. Given a pattern classification
task with a data set of labeled exemplars, the algorithm first
generates a population of random candidates, or chromo-
somes, each of which can be used to create a single trained
FAM classifier. The hierarchical parallel genetic optimi-
zation method searches for optimum chromosomes through
genetic selection, crossover, and mutation, iterated across
several generations from the initial starting population.
Subsequently, the new population of candidates will con-
sist of optimized chromosomes from which the best were
selected to create an ensemble of FAM classifiers. Pattern
classification was performed by the ensemble by having the
constituent FAMs classify an unknown object. Individual

classification decisions were combined using probabilistic
voting to select the final ensemble decision.

The individual modules of the framework consist of the
FAM pattern classifier, a HFCPGA for classifier optimi-
zation and a probabilistic voting step to combine classifier
decision in an ensemble.

2.1 Fuzzy ARTMAP

Fuzzy ARTMAP neural networks operate on the principle
of adaptive resonance theory for creating correlating con-
nections between a given multi-dimensional input vector
and the corresponding output representing its class cate-
gory. The FAM neural network architecture is illustrated in
Fig. 2. The system consists of two ART modules with a
mapping field connecting both modules. Given a set of
exemplars and their respective category labels, the input
vectors are fed into the ART, input module while the labels
go to the ART, output module. The supervised learning
method modifies the weighted connections between F3,
F®_ and F% to achieve resonance between the input and
output. Repeated over multiple times with a variety of
exemplars, the FAM learns to recognize and classify sim-
ilar input objects into the most likely class label based on
its learning experiences.

Details of the FAM operations [1] is given in further
details, as follows:

1. Given an object to be classified, in the form of a
normalized vector a with M attributes in the range of 0
to 1.

2. Vector a along with its complement, a® =1— a, was
encoded as a single input object A:



Fig. 2 Structure of the Fuzzy
ARTMAP neural network
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Among the nodes in F3 that have not been selected, a
node J was selected with the maximum choice
function:

Tj = A A w4 (1 = ) (M = [wy]) (2)

Uncommitted nodes were initialized with all values of
wy set to 1.

The selected node was matched against the bottom-up
input A. The field F{ represented the fuzzy intersection
between the input vector A and the weights of the node,
wy. The vector representing the match between input
vector A and the selected node weights w; is
represented as:

x=AAwy (3)

where A denotes the component-wise minimum, or

fuzzy intersection, of the bottom-up input vector A and
the top-down expectation wy. At this point, one of
several cases may occur:

* Node J failed to meet the match criterion: % <.

Another node was chosen and Step 3 was repeated.

¢ Node J meets the match criterion: % > p,. The
node was used to make a classification prediction
for object A.

e The object A was transmitted along the
weighted connections between F4 and the
mapping field F%*. A successful map between
the input A and output B was determined by the
map field match criterion:

Match
tracking FS"
F T (4)

e The match tracking equation was designed to
trigger a mismatch reset if the selected node J
makes a wrong prediction:
dp,

Lo~ —(p—p)+ IR (5)

In the case of an incorrect prediction, the
predictive error parameter R is set to 1 and the
current vigilance parameter p, was incremented
according to Eq. 5 until p, was larger than the

I
iAr

The algorithm then loops back to select a new
node J and repeat Step 3. In the meantime, p,
decays by the match tracking parameter, €
before the next node J was selected. This
mechanism was designed to minimize predic-
tive errors by stimulating search between
nodes, while maximizing the network’s gener-
alization ability through manipulating the cur-
rent vigilance parameter.

e In the case where object @ was successfully
mapped to class b, or if the selected node J was
uncommitted, the system learns by incorporat-
ing the input object A into node J:

match value 5, thus failing the match criterion.

Wi = (1= Bwi + BwG A4) (6)

e The algorithm loops back to Step 1 for the next
object to be classified.

The pseudocode of the process is given below.



TRAIN(DataSet, o, 3, €, p)
1 for i< 1 to N objects in DataSet
p do
A= Jasaf]
fa =P
for j—1toJ
do

do

else

Pa=pa—¢

The ART-based neural network was dependent on its
internal configuration of node weights, which in turn were
affected by a number of factors such as the ARTMAP
parameter settings and the training data used for learning.
A number of approaches for ARTMAP optimization used
evolutionary algorithms to search for the optimum training
sequence [11] and ARTMAP parameter settings [33].
Kaylani et al. [16], however, proposed using multi-objec-
tive GA for optimizing directly the ARTMAP’s internal
topology, thus bypassing the need to determine the
parameters.

In this study, however, we will focus on using GA for
optimizing the training order and the ARTMAP parame-
ters, given as:

e Baseline vigilance, p. Setting zero vigilance allows a
greater degree of generalization, while setting high
vigilance only permits learning from highly specific
exemplars.

Choice parameter, o. Influences the degree of unique-
ness of each committed node.

Learning rate, fi. Determines how quickly the nodes
adapt and learn the given data.

Match tracking parameter, e. Determines the rate in
which current vigilance returns to baseline after each
predictive error by the selected node.

2.2 Hierarchical fair-competition parallel genetic
algorithm

Genetic algorithms (GAs) are search heuristics employing
the principles of natural evolution to search for and refine
solutions for a given optimization task. A candidate solu-
tion to the problem is encoded in the form of a string of
genes, each representing one variable, constituting into a
single chromosome. A population of chromosomes are

do

while (T; = |[A Awj| + (1 —a)(M — |w;|) > Tmaz) and (J%“—l < pa)

if J is uncommitted
then w; = {wy{ wy,..,wdy }={1,1,....1}
if (J is uncommitted) or (|2°°| > pas|ys|)
then and w} = (1 — Alwd + FwFd A A)

while [297] < pus|ys|

d

o= (o P TR

maintained over the course of several consecutive genera-
tions, during which the chromosomes are subject to com-
petitive eliminations followed by genetic reproduction to
create new chromosomes variants from the remaining
survivors.

GAs have been used in the previous literature for opti-
mizing classifier performance, such as generic fuzzy rule-
based classifiers [32], radial basis function networks [34],
and simple vector regression [35]. In all cases, optimizing a
classifier requires the GA to search for an optimum com-
bination of parameters, with each classifier having different
parameters than the others.

One problem usually encountered especially with GAs
with high turnover rate, is that of population convergence.
With each successive round of eliminations and repro-
duction, the number of chromosomes sharing common
genetic traits will increase, leading to the population
clustering around a relatively small area in the solution
space. Therein exists the possibility of premature conver-
gence around a local optimum. Furthermore, in the context
of this study, single-point convergence is counterproduc-
tive as it results in the final group of chromosomes to be
homogeneous. For classifier ensembles, inter-classifier
diversity is considered an important trait in order for the
ensemble to perform better than its constituent classifiers.
The default GA methodology is therefore unsuitable for
our purpose to optimize individual FAMs for an ensemble
of classifiers.

The HFCPGA [22] was conceived as a technique for
mitigating the issue of premature convergence. The
HFCPGA employs multiple populations of chromo-
somes, each evolving independently of each other.
Distribution of chromosomes in each population is
arranged in a hierarchy, ensuring that the chromosomes
in each population face fair competition against chro-
with fitness. The multitude of

mosomes similar
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Fig. 3 A single chromosome consisting of three sections comprising all the parameters for optimizing FAMs for the given pattern classification

task

communities improves global diversity by splitting the
genetic convergence across multiple populations. Peri-
odic immigration lets high-fitness chromosomes to move
to a higher hierarchy and vice-versa, thus injecting new
diversity into the converging populations.

A single chromosome contains all of the variables to be
optimized, encoded as a single numerical string as shown
in Fig. 3. In this case, a chromosome consists of three parts
required to generate an initial FAM architecture and train it
to recognize and classify patterns.

¢ Training sequence. Given a data set with N exemplars,
this string is a random sequence of numbers from [ to N
representing the order in which the exemplars will be
presented to the FAM during supervised learning.

e ARTMAP structural parameters o, fi, e, and p,
randomized according to the parameter range defined
in Table 1.

¢ Feature subset selection. Given a data set of exemplars
with M attributes, this M-length binary string decides
which attribute to be excluded from the training data
set. A user-defined parameter can be implemented to
ensure a minimum andfor maximum limit to the
number of attributes in the subset.

Figure 4 shows the flowchart of the genetic optimization
process, elaborated as follows:

1. A population of random chromosomes was generated,
each representing a single configuration for creating
and training a FAM.

2. Each chromosome was used to generate a single
trained FAM classifier.

3. Each FAM was fitness-tested using tenfold cross-
validation. The training data set was divided evenly
into ten folds. For a single iteration, onefold was set
aside while the remaining folds were used for training
the classifier. The trained classifier was then used for
classifying the remaining fold. Repeat ten times, each
time using a different fold for testing.

4. The fitness of the tested chromosome was computed
from the mean recognition rate of the resulting trained
FAM classifier.

Table 1 Variables and parameters in the FAM architecture

Variable Description

a Input object to be classified. Formatted as a numerical
vector ranging from 0 to 1

at Complement-coded vector of a. Each element in the vector
isaf=1-gq

o Choice parameter. Determines node selection for signal
function 7}. Range from [0, 1], default & = 0.01

A Combination of original input vector a and its complement
a‘

b The true class category in which object a belongs to

I Learning rate, or rate in which node weights were updated.
Range from [0, 1], default f = 1.0 for fast leaming

r Fraction additive in vigilance parameter

€ Match tracking parameter. Rate in which vigilance decays
to baseline. Range from [—1, +1], default € =-0.001

J Selected critical feature pattern. Encoded as a vector of
weights wi;

r Mismatch parameter. r = 1 if p|A| — [x| > 0. Default
r=0

R Predictive error parameter. R = 1 if node J makes a
predictive error. Default R =0

P Current vigilance parameter. Range from [0, 1]

p Baseline vigilance parameter. Range from [0, 1]

T; Choice-by-difference signal function. Nodes in F4 are

selected in order of highest to lowest signal function
x4 Intersection between J and A: x* = |A A wy|

5. In the first generation, chromosomes were grouped
evenly into subpopulations according to similar fitness.
For subsequent generations, a selected chromosome
was immigrated to an adjacent subpopulation if it
possessed a significantly higher or lower fitness than
the average of the subpopulation.

6. Genetic selection, reproduction, and mutation were
performed.

* A number of chromosomes with the least fitness
were discarded.

e Offspring chromosomes were generated to replace
discarded chromosomes. Reproduction was per-
formed to generate an offspring which inherited the
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traits of parent chromosomes, followed by a
mutation to add a random element to any selected
gene in the chromosome. The reproduction and
mutation operations, outlined in Fig. 5, were
performed slightly differently for each segment of
the chromosome.

¢ The newly generated offspring chromosome was
added into the lowest subpopulation until they were
given a chance to migrate after the next round of
fitness testing.

7. The generation counter was incremented, and steps
2-5 were repeated until convergence was achieved by
reaching a maximum generation limit.

The following Table 2 summarizes the key differences
between the methodology of the HFCPGA and a simple GA.

2.3 Probabilistic voting

Classifier ensembles operate on the assumption that each
member of the ensemble functions as an independent
expert, and that combining the complementary information
from every classifier, the ensemble is able to score a higher
classification accuracy than any of its constituent classifi-
ers. The decision combination method used in this study is
similar the probabilistic voting system developed by Loo
and Rao [30] based on the work by Lin et al. [29].

Given an ensemble with L classifiers {Ey, E», ..., E}
for classifying an input object X into one of k class cate-
gories {Cy,Ca,...,Ci}.

PE(X) = C(X)) = pi (7)

E;(X) is the class prediction of classifier E; for the given
object X, and C(X) is the object’s true class. Thus, each
classifier has a constant recognition rate p; to classify an
object correctly. In the case of an incorrect recognition, it
was assumed that all residual classes have equal probability
of being selected:

PE(X) =C) =(1—p)/(k—1) =e; (8)
where j = 1,2,.. ..k and C; # C(X). Also, assuming clas-
sifier independence:

P(E(X), E2(X), ... EL(X)|C(X) = C})

= [[rEmxIicx) = ¢) ©)
i=1

To minimize the error rate of the combination system, the
class C; with the largest a posteriori probability should be
selected according to the Bayes’ rule:

P(C(X) = GIEi(X), E2(X), .. .. EL(X))
i PEX)|CX) = G)] x P(C(X) = C))
P(E1(X), E2(X),....EL(X))

(10)
i FE(X) =G i 4

PE(X)[C(X) = G) = {‘: i.fE-EX; £C ¢ (‘E)
(11)
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Table 2 Methodological differences between simple GA and

HFCPGA

Simple GA

HFCPGA

Single population of
chromosomes

All chromosomes placed in
the same population

For reproduction, two
parent

chromosomes were
selected at random

No migration

Chromosomes divided into multiple
subpopulations

Chromosomes were grouped into
subpopulations according to fitness

Roulette-wheel selection chooses a
subpopulation

Two parent chromosomes were chosen
at random from the same
subpopulation

Two chromosomes from different
subpopulations swap positions if a
high-fitness chromosome was located
in a low-fimess subpopulation and
vice-versa

where

C 1
djj(x) = {n
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As Y(X) is the same for every class category, the effective
decision function is the second part:

D;(X) =InP(C(X) = C) + Zln

L
i\ .
(eﬁ)"v‘(“

(k—1)p:

L
=InP(C(X)=C)+ > In (—.)ag(;{)
i=1
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