Skip to main content
Log in

Mean square input-to-state stability of a general class of stochastic recurrent neural networks with Markovian switching

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The paper presents M-matrix algebraic criteria for the input-to-state stability of a class of stochastic recurrent neural networks with Markovian switching. First, the criterion without the time delays is derived. Then, the result is extended to time-varying condition. The criterion also ensures globally exponential stability if there is no input term. These conditions are the improvement and extension of the existing results in the literature. A numerical example is given to demonstrate the effectiveness of the proposed algebraic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272

    Article  MATH  MathSciNet  Google Scholar 

  2. Cohen MA, Grossberg S (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13(5):815–821

    Article  MATH  MathSciNet  Google Scholar 

  3. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13(5):1239–1242

    Article  Google Scholar 

  4. Cao J, Yuan K, Li H (2006) Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans Neural Netw 17(6):1646–1651

    Article  Google Scholar 

  5. He Y, Wu M, She J (2006) Delay-dependent exponential stability for delayed neural networks with time-varying delay. IEEE Trans Circuits Syst II Express Briefs 53(7):553–557

    Article  Google Scholar 

  6. Chen W, Lu X (2008) Mean square exponential stability of uncertain stochastic delayed neural networks. Phys Lett A 372(7):1061–1069

    Article  MATH  MathSciNet  Google Scholar 

  7. Raja UK, Raja R, Samidurai R, Leelamani A (2014) Exponential stability for stochastic delayed recurrent neural networks with mixed time-varying delays and impulses: the continuous-time case. Phys Scr 87(5):055802

    Article  Google Scholar 

  8. Raja R, Anthoni SM (2012) New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural networks with discrete and distributed time varying delays. J Frankl Inst 349:2108–2123

    Article  Google Scholar 

  9. Raja R, Sakthivel R, Anthoni SM (2011) Delay-dependent stability criteria of stochastic uncertain Hopfield neural networks with unbounded distributed delays and impulses. Adv Syst Sci Appl 10(1):94–110

    Google Scholar 

  10. Raja R, Sakthivel R, Anthoni SM, Kim H (2011) Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays. Int J Appl Math Comput Sci 21:127–135

    Article  MATH  MathSciNet  Google Scholar 

  11. Sakthivel R, Raja R, Anthoni SM (2011) Exponential stability for delayed stochastic BAM neural networks with Markovian jumping and impulses. J Optim Theory Appl 150:166–187

    Article  MATH  MathSciNet  Google Scholar 

  12. Zeng Z, Wang J, Liao X (2003) Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans Circuits Syst I Fundam Theory Appl 50(10):1353–1358

    Article  MathSciNet  Google Scholar 

  13. Shen Y, Wang J (2008) An improved algebraic criterion for global exponential stability of recurrent neural networks with time-varying delays. IEEE Trans Neural Netw 19(3):528–531

    Article  Google Scholar 

  14. Song Q (2008) Exponential stability of recurrent neural networks with both time varying delays and general activation functions via LMI approach. Neurocomputing 71(13–15):2823–2830

    Article  Google Scholar 

  15. Liang J, Wang Z, Liu X (2009) State estimation for coupled uncertain stochastic networks with missing measurements and time-varying times: the discrete-time case. IEEE Trans Neural Netw 20(5):781–793

    Article  Google Scholar 

  16. Chen T, Rong L (2004) Robust global exponential stability of Cohen-Grossberg neural networks with time delays. IEEE Trans Neural Netw 15(1):203–206

    Article  MathSciNet  Google Scholar 

  17. Xu S, Lam J, Ho DWC, Zou Y (2004) Global robust exponential stability analysis for interval recurrent neural networks. Phys Lett A 352(2):124–133

    Article  Google Scholar 

  18. Liberzon D (2003) Switching in systems and control. Birkhauser, Boston

    Book  MATH  Google Scholar 

  19. Huang H, Qu Y, Li H (2005) Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty. Phys Lett A 345:345–354

    Article  MATH  Google Scholar 

  20. Shen Y, Wang J (2009) Almost sure exponential stability of recurrent neural networks with Markovian switching. IEEE Trans Neural Netw 20(5):840–855

    Article  Google Scholar 

  21. Yuan K, Cao J, Li H (2006) Robust stability of switched Cohen-Grossberg neural networks with mixed time-varying delays. IEEE Trans Syst Man Cybern 36(6):1356–1363

    Article  Google Scholar 

  22. Wang Z, Liu Y, Liu X (2009) State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw 22(1):41–48

    Article  Google Scholar 

  23. Zhu S, Shen Y, Chen G (2010) Exponential passivity of neural networks with time-varying delay and uncertainty. Phys Lett A 375:136–142

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhu S, Shen Y (2011) Passivity analysis of stochastic delayed neural networks with Markovian switching. Neurocomputing 74:1754–1761

    Article  Google Scholar 

  25. Jiang F, Shen Y, Liu L (2011) Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump. Commun Nonlinear Sci Numer Simul 16(2):798–804

    Article  MATH  MathSciNet  Google Scholar 

  26. Jiang F, Shen Y, Hu J (2011) Stability of the split-step backward Euler scheme for stochastic delay integro-differential equations with Markovian switching. Commun Nonlinear Sci Numer Simul 16(2):814–821

    Article  MATH  MathSciNet  Google Scholar 

  27. Sontag ED (1989) Smooth stabilization implies corpime factorization. IEEE Trans Autom Control 34:435–443

    Article  MATH  MathSciNet  Google Scholar 

  28. Sontag ED (2006) Input to state stability: basic concepts and results. In: Nistri N, Stefani G (eds) Nonlinear optimal control theory, pp 163–220

  29. Sontag ED, Wang Y (1996) New characterizations of input to state stability. IEEE Trans Autom Control 41:1283–1294

    Article  MATH  MathSciNet  Google Scholar 

  30. Jiang Z, Wang Y (2001) Input-to-state stability for discrete-time nonlinear systems. Automatica 37:857–869

    Article  MATH  Google Scholar 

  31. Cao C, Teel AR (2009) Characterizations of input-to-state stability for hybrid systems. Syst Control Lett 58:47–53

    Article  Google Scholar 

  32. Huang L, Mao X (2009) On input-to-state stability of stochastic retarded systems with Markovian switching. IEEE Trans Autom Control 54(8):1898–1902

    Article  MathSciNet  Google Scholar 

  33. Fridman E, Dambrine M, Yeganefar N (2008) On input-to-state stability of systems with time-delay: a matrix inequalities approach. Automatica 44:2364–2369

    Article  MATH  MathSciNet  Google Scholar 

  34. Sontag ED (1995) On the input to state stability property. Eur J Control 1:1–24

    Article  Google Scholar 

  35. Sanchez EN, Perez JP (1999) Input-to-state stability(ISS) analysis for dynamic neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 46(11):1395–1398

    Article  MATH  MathSciNet  Google Scholar 

  36. Guo Y (2008) New results on input-to-state convergence for recurrent neural networks with variable inputs. Nonlinear Anal RWA 9:1558–1566

    Article  MATH  Google Scholar 

  37. Yu W, Li X (2001) Some stability properties of dynamic neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 48(2):256–259

    Article  MATH  Google Scholar 

  38. Ahn CK (2010) Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay. Inf Sci 180:4582–4594

    Article  MATH  Google Scholar 

  39. Mao X, Yuan C (2006) Stochastic differential equations with Markovian switching. Imperial College Press, London

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China with Grant Nos. 11101434, 61203055 and the Fundamental Research Funds for the Central Universities 2012QNA48.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xu or Song Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Luo, W., Zhong, K. et al. Mean square input-to-state stability of a general class of stochastic recurrent neural networks with Markovian switching. Neural Comput & Applic 25, 1657–1663 (2014). https://doi.org/10.1007/s00521-014-1649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1649-2

Keywords

Navigation