Skip to main content

Advertisement

Log in

Design of stochastic solvers based on genetic algorithms for solving nonlinear equations

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the present study, a novel intelligent computing approach is developed for solving nonlinear equations using evolutionary computational technique mainly based on variants of genetic algorithms (GA). The mathematical model of the equation is formulated by defining an error function. Optimization of fitness function is carried out with the competency of GA used as a tool for viable global search methodology. Comprehensive numerical experimentation has been performed on number of benchmark nonlinear algebraic and transcendental equations to validate the accuracy, convergence and robustness of the designed scheme. Comparative studies have also been made with available standard solution to establish the correctness of the proposed scheme. Reliability and effectiveness of the design approaches are validated based on results of statistical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chun C (2006) Construction of Newton-like iteration methods for solving nonlinear equations. Numeriche Mathematik 104:297–315

    Article  MathSciNet  MATH  Google Scholar 

  2. Kumar M, Singh AK, Srivastava A (2013) Various Newton-type iterative methods for solving nonlinear equations. J Egypt Math Soc 21(3):334–339

  3. Darvishi MT, Barati A (2007) A third-order Newton-type method to solve systems of nonlinear equations. Appl Math Comput 187(2):630–635

    Article  MathSciNet  MATH  Google Scholar 

  4. Noor MA (2007) A new family of iterative methods for nonlinear equations. Appl Math Comput 190:553–558

    Article  MathSciNet  MATH  Google Scholar 

  5. Noor MA (2010) Some iterative methods for solving nonlinear equations using homotopy perturbation technique. International Journal of Computational Mathematics 87:141–149

    Article  MATH  Google Scholar 

  6. Noor MA, Khan WA, Noor KI, Al-Said E (2011) Higher-order iterative methods free from second derivative for solving nonlinear equations. International Journal of the Physical Sciences 6(8):1887–1893

    Google Scholar 

  7. Thukral R (2011) Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Applied Mathematics 2011:1–12

    Article  MathSciNet  Google Scholar 

  8. Traub JF (1964) Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs, p 310

    MATH  Google Scholar 

  9. Raja, MAZ, Khan JA, and Qureshi IM (2013) Numerical treatment for Painlevé equation i using neural networks and stochastic solvers. In: Jordanov I, Jain LC (eds) Innovation in intelligent machines-3. Studies in computational intelligence, vol 442. Springer, Berlin, pp 103–117

  10. Raja MAZ, Khan JA, Ahmad SI, and Qureshi IM (2012) Solution of the Painlevé equation-I using neural network optimized with swarm intelligence. Comput Intell Neurosci, Article ID. 721867, pp 1–10

  11. Raja MAZ (2014) Unsupervised neural networks for solving Troesch’s problem. Chin Phys B 23(1):018903

    Article  Google Scholar 

  12. Raja MAZ (2014) Stochastic numerical techniques for solving Troesch’s Problem. Accepted in Information Sciences 279:860–873. doi:10.1016/j.ins.2014.04.036

    Article  MathSciNet  Google Scholar 

  13. Raja MAZ. Solution of one-dimension Bratu equation arising in fuel ignition model using ANN optimized with PSO and SQP. Connection Science, 17-04-2014 doi:10.1080/09540091.2014.907555

  14. Raja MAZ, Ahmad SI (2014) Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Comput Appl 24(3–4):549–561. doi:10.1007/s00521-012-1261-2

    Article  Google Scholar 

  15. Raja MAZ, Ahmad SI, Samar R (2013) Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput Appl 23(7–8):2199–2210

    Article  Google Scholar 

  16. Raja MAZ, Samar R, and Rashidi MM (2014) Application of three Unsupervised Neural Network Models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput Appl. doi:10.1007/s00521-014-1641-x

  17. Khan JA, Raja MAZ, Qureshi IM (2011) Numerical treatment of nonlinear Emden–Fowler equation using stochastic technique. Ann Math Artif Intell 63(2):185–207

    Article  MathSciNet  Google Scholar 

  18. Khan JA, Raja MAZ, Qureshi IM (2011) Hybrid evolutionary computational approach: application to van der Pol oscillator. Int J Phys Sci 6(31):7247–7261. doi:10.5897/IJPS11.922

    Google Scholar 

  19. Khan JA, Raja MAZ and Qureshi IM. Novel approach for van der Pol oscillator on the continuous time domain. Chin Phys Lett 28:110205. doi:10.1088/0256-307X/28/11/110205

  20. Raja MAZ, Khan JA, and Qureshi IM (2011) Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math Probl Eng 2011, Article ID. 765075, 18 pp

  21. Raja MAZ, Khan JA, Qureshi IM (2010) A new stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60(3–4):229–250

    Article  MathSciNet  MATH  Google Scholar 

  22. Raja MAZ, Samar R (2014) Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193. doi:10.1016/j.neucom.2013.07.013

    Article  Google Scholar 

  23. Raja MAZ, Samar R (2014) Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput Fluids 91:28–46

    Article  MathSciNet  Google Scholar 

  24. Noor MA, Khan WA, Hussain A (2007) A new modified Halley method without second derivatives for nonlinear equation. Appl Math Comput 189.2:1268–1273

    Article  MathSciNet  Google Scholar 

  25. Traub JF (1964) Iterative methods for solution of equations. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  26. Cordero A, Hueso JL, Martinez E, Torregrosa JR (2012) Steffensen type method for solving nonlinear equations. J Comput Appl Math 236(12):3058–3064

    Article  MathSciNet  MATH  Google Scholar 

  27. Noor MA, Inayat Noor K (2006) Fifth-order iterative methods for solving nonlinear equations. Appl Math Comput. doi:10.1016/j.amc.2006.10.007.

  28. Kou J, Li Y, Wang X (2006) A family of fifth-order iterations composed of Newton and third-order methods. Appl Math Comput. doi:10.1016/j.amc.2006.07.150

    Google Scholar 

  29. Kou J, Li Y (2006) Improvements of Chebyshev–Halley methods with fifth-order convergence. Appl Math Comput. doi:10.1016/j.amc.2006.09.097

    Google Scholar 

  30. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor

    Google Scholar 

  31. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  32. Kumar S et al (2013) Hybrid evolutionary techniques in feed forward neural network with distributed error for classification of handwritten Hindi ‘SWARS’. Connection Science 25(4):197–215

    Article  Google Scholar 

  33. Song A, Zhang M (2012) Genetic programming for detecting target motions. Connection Science 24(2–3):117–141

    Article  Google Scholar 

  34. Pini G, Tuci E (2008) On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach. Connection science 20(2–3):211–230

    Article  Google Scholar 

  35. Wang J-B, Jun L (2011) Double screen frequency selective surface structure optimized by genetic algorithm. Acta Phys. Sin. 60(5):057304

    Google Scholar 

  36. Petković MS (2013) A note on the priority of optimal multipoint methods for solving nonlinear equations. Appl Math Comput 219(10):5249–5252

    Article  MathSciNet  MATH  Google Scholar 

  37. Herceg D, Herceg D (2013) Means based modifications of Newton’s method for solving nonlinear equations. Appl Math Comput 219(11):6126–6133

    Article  MathSciNet  MATH  Google Scholar 

  38. Chicharro F et al (2013) Complex dynamics of derivative-free methods for nonlinear equations. Appl Math Comput 219(12):7023–7035

    Article  MathSciNet  MATH  Google Scholar 

  39. Ardelean G (2013) A new third-order Newton-type iterative method for solving nonlinear equations. Appl Math Comput 219(18):9856–9864

  40. Soleymani Fazlollah (2013) An efficient twelfth-order iterative method for finding all the solutions of nonlinear equations. J Comput Methods Sci Eng 13(3):309–320

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.A.Z., Sabir, Z., Mehmood, N. et al. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neural Comput & Applic 26, 1–23 (2015). https://doi.org/10.1007/s00521-014-1676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1676-z

Keywords

Navigation