Skip to main content
Log in

Incremental multiple instance outlier detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

I-MLOF algorithm is an extension of local outlier factor (LOF) algorithm in multiple instance (MI) setting. The task of I-MLOF is to identify MI outlier. However, I-MLOF algorithm works in batch mode, where all samples must be provided for once. In some real applications such as industrial detection and traffic monitoring, MI outlier is required to be identified from data stream. The batch-mode outlier detection methods usually cannot be applied directly to these applications. In this paper, an incremental MI outlier detection algorithm “Inc I-MLOF” is proposed. MI outlier detection can be done for sequentially arrived data with Inc I-MLOF. We prove theoretically that Inc I-MLOF achieves the equal result to that of I-MLOF. The experimental results illustrate Inc I-MLOF achieves good performance on several synthetic and real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chandola V, Banerjee A, Kumar V (2007) Outlier detection: a survey, Tech. rep., Department of Computer Science, University of Minnesota, https://wwws.cs.umn.edu/tech_reports_upload/tr2007/old_files/07-017.pdf

  2. Huynh D, Heyden A (2001) Outlier detection in video sequences under affine projection. In: International conference on computer vision and pattern recognition (CVPR), IEEE, pp 687–695

  3. Held C, Krumm J, Markel P, Schenke RP (2012) Intelligent video surveillance. Computer 45(3):83–84

    Article  Google Scholar 

  4. Lo Presti L, Sclaroff S, Cascia M (2012) Path modeling and retrieval in distributed video surveillance databases. IEEE Trans Multimed 14(2):346–360

    Article  Google Scholar 

  5. Williams B, Hoel L (1999) Modeling and forecasting vehicular traffic flow as a seasonal stochastic time series process, Tech. rep., Mid-Atlantic Universities Transportation Center, Pennsylvania State University http://trid.trb.org/view.aspx?id=648324

  6. Li X, Li Z, Han J, Lee J-G (2009) Temporal outlier detection in vehicle traffic data. In: IEEE 25th international conference on data engineering (ICDE), IEEE, pp 1319–1322

  7. Lee J, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In: IEEE international conference on data engineering (ICDE), IEEE, pp 140–149

  8. Kou Y, Lu C, Chen D (2009) Spatial weighted outlier detection. In: SIAM international conference on data mining (SDM), SIAM, pp 614–618

  9. Munoz A, Muruzabal J (1998) Self-organizing maps for outlier detection. Neurocomputing 18(1–3):33–60

    Article  Google Scholar 

  10. Liu B, Yin J, Xiao Y, Cao L, Yu P (2010) Exploiting local data uncertainty to boost global outlier detection. In: 2010 IEEE international conference on data mining, IEEE, pp 304–313

  11. Kriegel H et al (2008) Angle-based outlier detection in high-dimensional data. In: ACM international conference on knowledge discovery and data mining (SIGKDD), ACM, pp 444–452

  12. Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2008) Inlier-based outlier detection via direct density ratio estimation. In: IEEE international conference on data mining (ICDM), IEEE, pp 223–232

  13. Ando S (2007) Clustering needles in a haystack: an information theoretic analysis of minority and outlier detection. In: IEEE international conference on data mining (ICDM), IEEE, pp 13–22

  14. Ren D, Wang B, Perrizo W (2004) Rdf: A density-based outlier detection method using vertical data representation. In: IEEE international conference on data mining (ICDM), IEEE, pp 503–506

  15. Li Y-X, Ji S, Kumar S, Ye J, Zhou Z-H (2012) Drosophila gene expression pattern annotation through multi-instance multi-label learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(1):98–112

    Article  Google Scholar 

  16. Levin A, Nadler B, Durand F, Freeman WT (2012) Patch complexity, finite pixel correlations and optimal denoising. In: European conference on computer vision (ECCV), Springer, pp 73–86

  17. Agostinelli F, Anderson MR, Lee H (2013) Robust image denoising with multi-column deep neural networks, in: Advances in Neural Information Processing Systems, pp. 1493–1501

  18. Wu O, Gao J, Hu W, Li B, Zhu M (2010) Identifying multi-instance outliers. In: SIAM international conference on data mining (SDM), SIAM, pp 430–441

  19. Hughes G, Murray J, Kreutz-Delgado K, Elkan C (2002) Improved disk-drive failure warnings. IEEE Transactions on Reliability 51(3):350–357

    Article  Google Scholar 

  20. Murray J, Hughes G, Kreutz-Delgado K (2006) Machine learning methods for predicting failures in hard drives: a multiple-instance application. Journal of Machine Learning Research 6(1):783

    MathSciNet  Google Scholar 

  21. Breunig M, Kriegel H, Ng R, Sander J (2000) Lof: identifying outliers in large dataset. In: ACM SIG conference on management of database (SIGMOD), pp 93–104

  22. Pokrajac D, Lazarevic A, Latecki LJ (2007) Incremental local outlier detection for data streams. In: IEEE symposium on computational intelligence and data mining (CIDM), IEEE, pp 504–515

  23. Petković MD, Pokrajac D, Latecki LJ (2012) Spherical coverage verification. Appl Math Comput 218(19):9699–9715

    Article  MATH  MathSciNet  Google Scholar 

  24. Downs J, Vogel E (1993) A plant-wide industrial process control problem. Comput Chem Eng 17(3):245–255

    Article  Google Scholar 

  25. Chiang LH, Braatz RD, Russell EL (2001) Fault detection and diagnosis in industrial systems. Springer, Berlin

    Book  MATH  Google Scholar 

  26. http://cmrr.ucsd.edu/smart/

  27. Wang H, Nie F, Huang H (2011) Learning instance specific distance for multi-instance classification. In: AAAI

  28. Wang H, Huang H, Kamangar F, Nie F, Ding CH (2011) Maximum margin multi-instance learning. In: Advances in neural information processing systems, pp 1–9

  29. Hou C, Zhang C, Wu Y, Jiao Y (2009) Stable local dimensionality reduction approaches. Pattern Recognit 42(9):2054–2066

    Article  MATH  Google Scholar 

  30. Hou C, Zhang C, Wu Y, Nie F (2010) Multiple view semi-supervised dimensionality reduction. Pattern Recognit 43(3):720–730

    Article  MATH  Google Scholar 

  31. Hou C, Nie F, Zhang C, Yi D, Wu Y (2014) Multiple rank multi-linear svm for matrix data classification. Pattern Recognit 47(1):454–469

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by 973 Program (2013CB329503), NSFC (Grant No. 91120301), NSFC (Grant No. 61403281), Open Research Project under Grant 20120105 from SKLMCCS and Beijing Municipal Education Commission Science and Technology Development Plan key project under grant KZ201210005007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhao, Z., Weng, S. et al. Incremental multiple instance outlier detection. Neural Comput & Applic 26, 957–968 (2015). https://doi.org/10.1007/s00521-014-1750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1750-6

Keywords

Navigation