Skip to main content

Advertisement

Log in

Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Grey Wolf Optimizer (GWO) is a recently developed meta-heuristic search algorithm inspired by grey wolves (Canis lupus), which simulate the social stratum and hunting mechanism of grey wolves in nature and based on three main steps of hunting: searching for prey, encircling prey and attacking prey. This paper presents the application of GWO algorithm for the solution of non-convex and dynamic economic load dispatch problem (ELDP) of electric power system. The performance of GWO is tested for ELDP of small-, medium- and large-scale power systems, and the results are verified by a comparative study with lambda iteration method, Particle Swarm Optimization algorithm, Genetic Algorithm, Biogeography-Based Optimization, Differential Evolution algorithm, pattern search algorithm, NN-EPSO, FEP, CEP, IFEP and MFEP. Comparative results show that the GWO algorithm is able to provide very competitive results compared to other well-known conventional, heuristics and meta-heuristics search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. OUP, Oxford, USA

    MATH  Google Scholar 

  2. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Article  Google Scholar 

  3. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings, IEEE international conference on neural networks, 1995, pp 1942–1948

  4. Kirkpatrick S, Gelatt D Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  5. Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering (IKE’03), Las Vegas, Nevada, USA, pp 255–261

  6. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  7. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  8. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214

  9. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  10. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  11. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Article  Google Scholar 

  12. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184. doi:10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  13. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  14. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Jao L et al (eds) Advances in natural computation. Springer, Heidelberg, pp 264–273

  15. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Article  Google Scholar 

  16. Xue-hui L, Ye Y, Xia L (2008) Solving TSP with shuffled frog-leaping algorithm. In: IEEE proceedings of 8th international conference on intelligent systems design and applications (ISDA’08), Kaohsiung, vol 3, pp 228–232

  17. Fang H, Kim J, Jang J (2011) A fast snake algorithm for tracking multiple-objects. J Inf Process Syst 7(3):519–530

    Article  Google Scholar 

  18. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  19. Abbass HA (2001) MBO: marriage in honey bees optimization-A haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation, 2001, pp 207–214

  20. Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China

  21. Roth M, Wicker S (2006) Termite: a swarm intelligent routing algorithm for mobilewireless Ad-Hoc networks. In: Studies in Computational Intelligence (SCI), vol 31. Springer, Heidelberg, pp 155–184

  22. Pinto PC, Runkler TA, Sousa JM (2007) Wasp swarm algorithm for dynamic MAX-SAT problems. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Adaptive and natural computing algorithms. Springer, Heidelberg, pp 350–357

  23. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, p 162

  24. Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: Huang D-S et al (eds) Advanced intelligent computing theories and applications. With aspects of artificial intelligence. Springer, Heidelberg, pp 518–525

  25. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature & biologically inspired computing, 2009. NaBIC 2009, pp 210–214

  26. Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: WRI global congress on intelligent systems, 2009. GCIS’09, pp 124–128

  27. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Article  Google Scholar 

  28. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  29. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Article  Google Scholar 

  30. Khokhar B, Parmar KPS, Dahiya S (2012) Application of biogeography-based optimization for economic dispatch problems. Int J Comput Appl (0975 – 888) 47(13):25–30

    Google Scholar 

  31. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7(1):83–94

    Article  Google Scholar 

  32. Gaing Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195

    Article  Google Scholar 

  33. Chiang C-L (2005) Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans Power Syst 20(4):1690–1699

    Article  Google Scholar 

  34. Devi AL, Vamsi Krishna O (2008) Combined economic and emission dispatch using evolutionary algorithms—a case study. ARPN J Eng Appl Sci 3(6):28–35

    Google Scholar 

  35. Kumar KS, Rajaram R, Tamilselvan V, Shanmugasundaram V, Naveen S, Nowfal IGM, Jayabarathi T (2009) Economic dispatch with valve point effect using various PSO techniques. Int J Recent Trends Eng 2(6):130–135

    Google Scholar 

  36. Singh Lakhwinder, Dhillon JS (2009) Cardinal priority ranking based decision making for economic-emission dispatch problem. Int J Eng Sci Technol 1(1):272–282

    Google Scholar 

  37. Duman S, Güvenç U, Yörükeren N (2010) Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng 5(6):2890–2895

    Google Scholar 

  38. Bhattacharya A, Chattopadhyay PK (2010) Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl 37(5):3605–3615

    Article  Google Scholar 

  39. Bhattacharya Aniruddha, Chattopadhyay PK (2010) Application of biogeography-based optimization for solving multi-objective economic emission load dispatch problems. Electr Power Compon Syst 38(3):340–365

    Article  Google Scholar 

  40. Rayapudi SR (2011) An intelligent water drop algorithm for solving economic load dispatch problem. Int J Electr Electron Eng 5(2):43–49

    Google Scholar 

  41. Pandi VR, Panigrahi BK (2011) Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm. Expert Syst Appl 38(7):8509–8514

    Article  Google Scholar 

  42. Swain RK, Sahu NC, Hota PK (2012) Gravitational search algorithm for optimal economic dispatch. Proc Technol 6:411–419

    Article  Google Scholar 

  43. Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  44. Rajasomashekar S, Aravindhababu P (2012) Biogeography based optimization technique for best compromise solution of economic emission dispatch. Swarm Evol Comput 7:47–57

    Article  Google Scholar 

  45. Güvenç U, Sönmez Y, Duman S, Yörükeren N (2012) Combined economic and emission dispatch solution using gravitational search algorithm. Sci Iranica 19(6):1754–1762

    Article  Google Scholar 

  46. Adriane BS (2013) Cuckoo search for solving economic dispatch load problem. Intell Control Autom 4:385–390

    Article  Google Scholar 

  47. Wang L, Li L (2013) An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems. Int J Electr Power Energy Syst 44(1):832–843

    Article  Google Scholar 

  48. Dubey HM, Pandit M, Panigrahi BK, Udgir M (2013) Economic load dispatch by hybrid swarm intelligence based gravitational search algorithm. Int J Intell Syst Appl (IJISA) 5(8):21–32

    Google Scholar 

  49. Ravi CN, Christober Asir Rajan C (2013) Differential evolution technique to solve combined economic emission dispatch. In: 3rd international conference on electronics, biomedical engineering and its applications (ICEBEA’2013) January, pp 26–27

  50. Gopalakrishnan R, Krishnan A (2013) An efficient technique to solve combined economic and emission dispatch problem using modified Ant colony optimization. Sadhana 38(4):545–556

    Article  MathSciNet  MATH  Google Scholar 

  51. Secui DC, Bendea G, Hora C (2014) A modified harmony search algorithm for the economic dispatch problem. Stud Inf Control 23(2):143–152

    Google Scholar 

  52. Kherfane RL, Younes M, Kherfane N, Khodja F (2014) Solving economic dispatch problem using hybrid GA-MGA. Energy Proc 50:937–944

    Article  Google Scholar 

  53. Aydin D, Ozyon S, Yaşar C, Liao T (2014) Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int J Electr Power Energy Syst 54:144–153

    Article  Google Scholar 

  54. Thao NTP, Thang NT (2014) Environmental economic load dispatch with quadratic fuel cost function using cuckoo search algorithm. Sci Technol 7(2):199–210

    Google Scholar 

  55. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584

    Article  Google Scholar 

  56. Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. Prentice Hall India, New Delhi, India

    Google Scholar 

  57. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69(2014):46–61

    Article  Google Scholar 

  58. Mech LD (1999) Alpha status, dominance, and division of labor in wolf packs. Can J Zool 77:1196–1220

    Article  Google Scholar 

  59. Muro C, Escobedo R, Spector L, Coppinger R (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Process 88:192–197

    Article  Google Scholar 

  60. Wood AJ, Wollenberg BF (1996) Power Generation, Operation and Control, 2nd edn. Wiley, New York

    Google Scholar 

  61. Bestha M, Harinath Reddy K, Hemakeshavulu O (2014) Economic load dispatch with valve—point result employing a binary bat formula. Int J Electr Comput Eng (IJECE) 4(1):101–107

    Google Scholar 

  62. Ghazzai H, Yaacoub E, Alouini M, Dawy Z, Abu Dayya A (2015) Optimized LTE cell planning with varying spatial and temporal user densities. IEEE Trans Veh Technol 88(99):1. doi:10.1109/TVT.2015.2411579

    Google Scholar 

  63. Ghazzai H, Yaacoub E, Alouini M-S (2014) Optimized LTE cell planning for multiple user density subareas using meta-heuristic algorithms. In: 2014 IEEE 80th vehicular technology conference (VTC Fall), pp. 1–6, 14–17 Sept. 2014. doi:10.1109/VTCFall.2014.6966100

  64. Muangkote N, Sunat K, Chiewchanwattana S (2014) An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets. In: 2014 international computer science and engineering conference (ICSEC), pp. 209–214, July 30 2014–Aug 1 2014. doi: 10.1109/ICSEC.2014.6978196

  65. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7(1):83–94

    Article  Google Scholar 

  66. Muthu Vijaya Pandian S, Thanushkodi K (2011) An evolutionary programming based efficient particle swarm optimization for economic dispatch problem with valve-point loading. Eur J Sci Res 52(3):385–397

    Google Scholar 

  67. Su C-T (2000) New approach with a Hopfield modeling framework to economic dispatch. IEEE Trans Power Syst 15(2):541–545

    Article  Google Scholar 

  68. Yang H-T, Yang P-C, Huang C-L (1997) A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks. IEEE Trans Power Syst 12(2):661–669

    Article  Google Scholar 

  69. Sydulu M (1999) A very fast and effective non-iterative “h-Logic Based” algorithm for economic dispatch of thermal units. In: EEE TENCON

  70. Kim MJ, Song H-Y, Park J-B, Roh J-H, Lee SU, Son S-Y (2013) An improved mean-variance optimization for non-convex economic dispatch problems. J Electr Eng Technol 8(1):80–89

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Punjab Technical University, Jalandhar, for providing advanced research facilities during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, V.K., Bath, S.K. & Dhillon, J.S. Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput & Applic 27, 1301–1316 (2016). https://doi.org/10.1007/s00521-015-1934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1934-8

Keywords

Navigation