Skip to main content
Log in

RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Streamflow forecasting can have a significant economic impact, as this can help in water resources management and in providing protection from water scarcities and possible flood damage. Artificial neural network (ANN) had been successfully used as a tool to model various nonlinear relations, and the method is appropriate for modeling the complex nature of hydrological systems. They are relatively fast and flexible and are able to extract the relation between the inputs and outputs of a process without knowledge of the underlying physics. In this study, two types of ANN, namely feed-forward back-propagation neural network (FFNN) and radial basis function neural network (RBFNN), have been examined. Those models were developed for daily streamflow forecasting at Johor River, Malaysia, for the period (1999–2008). Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static neural networks. The results demonstrate that RBFNN model is superior to the FFNN forecasting model, and RBFNN can be successfully applied and provides high accuracy and reliability for daily streamflow forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control, revised ed. Holden-Day, San Francisco, USA

  2. Simon Haykin (1999) Neural networks: a comprehensive foundation, p 842

  3. Afan HA, El-Shafie A, Yaseen ZM et al (2014) ANN based sediment prediction model utilizing different input scenarios. Water Resour Manag 29:1231–1245. doi:10.1007/s11269-014-0870-1

    Article  Google Scholar 

  4. Alp M, Cigizoglu HK (2007) Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environ Model Softw 22:2–13. doi:10.1016/j.envsoft.2005.09.009

    Article  Google Scholar 

  5. Kisi O, Dailr AH, Cimen M, Shiri J (2012) Suspended sediment modeling using genetic programming and soft computing techniques. J Hydrol 450–451:48–58. doi:10.1016/j.jhydrol.2012.05.031

    Article  Google Scholar 

  6. Rai RK, Mathur BS (2008) Event-based sediment yield modeling using artificial neural network. Water Resour Manag 22:423–441. doi:10.1007/s11269-007-9170-3

    Article  Google Scholar 

  7. Roushangar K, Mehrabani FV, Shiri J (2014) Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs). J Hydrol 514:114–122. doi:10.1016/j.jhydrol.2014.03.065

    Article  Google Scholar 

  8. Shiri J, Kişi Ö (2012) Estimation of daily suspended sediment load by using wavelet conjunction models. J Hydrol Eng 17:986–1000. doi:10.1061/(ASCE)HE.1943-5584.0000535

    Article  Google Scholar 

  9. Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural networks. J Hydrol 309:229–240. doi:10.1016/j.jhydrol.2004.12.001

    Article  Google Scholar 

  10. Sulaiman M, El-Shafie A, Karim O, Basri H (2011) Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour Manag 25:2525–2541. doi:10.1007/s11269-011-9824-z

    Article  Google Scholar 

  11. Cigizoglu HK, Alp M (2004) Rainfall-runoff modelling using three neural network methods. Methods 3070:166–171

    MATH  Google Scholar 

  12. Unal B, Mamak M, Seckin G, Cobaner M (2010) Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels. Adv Eng Softw 41:120–129. doi:10.1016/j.advengsoft.2009.10.002

    Article  MATH  Google Scholar 

  13. Karimi S, Kisi O, Shiri J, Makarynskyy O (2013) Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Comput Geosci 52:50–59. doi:10.1016/j.cageo.2012.09.015

    Article  Google Scholar 

  14. Kisi O, Akbari N, Sanatipour M, Hashemi A, Teimourzadeh K, Shiri J (2013) Modeling of dissolved oxygen in river water using artificial intelligence techniques. J Environ Inf 22:92–101

    Article  Google Scholar 

  15. Talento S, Terra R (2013) Basis for a streamflow forecasting system to Rincón del Bonete and Salto Grande (Uruguay). Theor Appl Climatol 114:73–93. doi:10.1007/s00704-012-0822-8

    Article  Google Scholar 

  16. Taylor P, Campolo M, Soldati A, Andreussi P (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol Sci J 48:381–398

    Article  Google Scholar 

  17. Kagoda PA., Ndiritu J, Ntuli C, Mwaka B (2010) Application of radial basis function neural networks to short-term streamflow forecasting. Phys Chem Earth 35:571–581. doi:10.1016/j.pce.2010.07.021

  18. Shiri J, Kisi O (2010) Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J Hydrol 394:486–493. doi:10.1016/j.jhydrol.2010.10.008

    Article  Google Scholar 

  19. Wu JS, Han J, Annambhotla S, Bryant S (2005) Artificial neural networks for forecasting watershed runoff and stream flows. J Hydrol Eng 10:216–222. doi:10.1061/(ASCE)1084-0699(2005)10:3(216)

    Article  Google Scholar 

  20. El-Shafie A, Abdin AE, Noureldin A, Taha MR (2009) Enhancing inflow forecasting model at Aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements. Water Resour Manag 23:2289–2315. doi:10.1007/s11269-008-9382-1

    Article  Google Scholar 

  21. Danandeh Mehr A, Kahya E, Şahin A, Nazemosadat MJ (2014) Successive-station monthly streamflow prediction using different artificial neural network algorithms. Int J Environ Sci Technol. doi:10.1007/s13762-014-0613-0

  22. Hosseinzadeh Talaee P (2014) Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Comput Appl 24:695–703. doi:10.1007/s00521-012-1287-5

    Article  Google Scholar 

  23. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124

  24. Brown M, Harris CJ (1995) A perspective and critique of adaptive neurofuzzy systems used for modelling and control applications. Int J Neural Syst 60(2):197–220

  25. Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). Royal Signals and Radar Establishment Malvern, United Kingdom

  26. Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262. doi:10.1016/j.jhydrol.2004.03.027

    Article  Google Scholar 

  27. Bishop CM (1995) Neural networks for pattern recognition. J Am Stat Assoc. doi:10.2307/2965437

    MATH  Google Scholar 

  28. Ripley BD (2007) Pattern recognition and neural networks. Cambridge university press, Cambridge

  29. Zhang GP, Patuwo EB, Michael YH (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62. doi:10.1016/S0169-2070(97)00044-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate so much the financial support received by the second and sixth authors via DIP-2012-03 project funded from Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, Z.M., El-Shafie, A., Afan, H.A. et al. RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput & Applic 27, 1533–1542 (2016). https://doi.org/10.1007/s00521-015-1952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1952-6

Keywords

Navigation