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Abstract In the majority of traditional Extreme Learn-
ing Machine (ELM) approaches, the parameters of the
basis functions are randomly generated and don’t need
to be tuned while the weights connecting the hidden
layer to the output layer are analytically estimated. The
determination of the optimal number of basis functions
to be included in the hidden layer is still an open prob-
lem. Cross-validation and heuristic approaches (con-
structive and destructive) are some of the methodolo-
gies used to perform this task. Recently, a deterministic
algorithm based on the Principal Component Analysis
(PCA) and ELM has been proposed to assess the num-
ber of basis functions according to the number of prin-
cipal components necessary to explain the 90% of the
variance in the data. In this work the PCA part of the
PCA-ELM algorithm is joined to the Linear Discrimi-
nant Analysis (LDA) as an hybrid means to perform the
pruning of the hidden nodes. This is justified by the fact
that the LDA approach is outperforming the PCA one
on a set of problems. Hence the idea of combining the
two approaches in a LDA-PCA-ELM algorithm that is
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shown to be in average better than its PCA-ELM and
LDA-ELM counterparts. Moreover the performance in
classification and the number of basis functions selected
by the algorithm, on a set of benchmark problems, have
been compared and validated in the experimental sec-
tion using non parametric tests against a set of existing
ELM techniques.

Keywords Principal Component Analysis Linear
Discriminant Analysis - Extreme Learning Machine -
Neural Networks

1 Introduction

The Extreme Learning Machine (ELM) framework has
received much attention in the machine learning com-
munity since Huang et. al [18,17] proposed it in the In-
ternational Joint Conference on Neural Networks. The
ELM framework provides a way to estimate the pa-
rameters of a Single-hidden Layer Feedforward Network
(SLFN) analytically. The main idea of the framework
is very intuitive and proceeds as follow: the parameters
of the basis functions (also called hidden nodes) are
randomly generated while the weights connecting the
hidden layer to the output layer are analytically com-
puted by inverting the hidden layer output matrix. The
ELM does not require any iterations to determine the
network parameters, reducing dramatically the compu-
tational time. Thus, ELM is an highly computationally
efficient learning algorithm that provides good gener-
alization performance, even comparable to the gener-
alization performance of the Support Vector Machine
(SVM) [15]. The ELM framework has been successfully
applied in facial expression recognition [28], engine air-
ratio control [29] or electricity price classification [25]
to name just a few of real-world applications.
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In the ELM framework, the determination of the
optimal number of basis functions becomes an interest-
ing and critical problem to exploit at most the ELM
advantages. However, the original ELM [16] does not
provide any effective solution to this problem. In most
cases, the number of hidden nodes is part of a pre-
processing analysis based on heuristics (trial and error
or cross-validation procedures), a very tedious task in
many real-world applications.

To avoid the aforementioned problems, some im-
provements of the original ELM have been proposed to
optimize the network architecture. The available method-
ologies can be divided in two groups: destructive and
constructive methods. For the former approach, Rong
et al. [23] proposed the pruned ELM (P-ELM) for clas-
sification problems. The algorithm is initialized with a
large network and then removes the basis functions hav-
ing low relevance to the output, in the meaning of small
output layer weights. Miche et al. [22] proposed the
Optimally-Pruned ELM (OP-ELM) algorithm which ran-
domly initializes the hidden node weights, and ranks the
resultant basis functions. The OP-ELM algorithm ap-
plies the pruning strategy by the Multi-Response Sparse
Regression (MRSR) algorithm and the Leave-One-Out
(LOO) validation method. The main drawback of these
destructive methods is that the algorithm starts with
a large network that increases the computational com-
plexity of the methodology. For the latter approach, the
Incremental ELM (I-ELM) [15] and its variants [13,14]
are based on the idea of adding basis functions one-
by-one to the hidden layer and incrementally update
the output weights. The main problems of these algo-
rithms are that those methods can not lead to an op-
timal network architecture and the output weights of
the SLFN are required to be recursively updated. On
the other hand, Feng et al. [7] proposed the Error Mini-
mized ELM (EM-ELM). The EM-ELM method can add
random basis functions one-by-one or group-by-group.
Unfortunately, the basis functions added are randomly
generated and might deteriorate the performance with
a large number of basis functions because no generaliza-
tion performance is guaranteed. In a similar direction,
Lan et al. [19] proposed the Constructive Selection of
hidden nodes in ELM (CS-ELM). In this approach, the
basis functions are selected by the MRSR algorithm.
However, the CS-ELM is suitable just for regression
problems and the selection of the basis functions is car-
ried out on normalized regressors (increasing the com-
putational burden).

Furthermore, all constructive and destructive meth-
ods for model selection of the ELM directly work on
the basis function (hidden node) output matrix H €
RY x RS, where N is the number of patterns in the

training set and S the number of basis functions. Gen-
erally, the number of training patterns, N, is signif-
icant higher than the number basis functios, S mak-
ing the H matrix potentially rank deficient and leading
to unstable model structures. Finally, constructive and
destructive methods limit the number of available ar-
chitectures, thus introducing constraints in the search
space of possible structures that may not be suitable to
the problem. Although these methods have been proved
useful in simulated data [27], their application to real
problems has been rather unsuccessful [11].

Recently, Castano proposed the Principal Compo-
nent Analysis ELM (PCA-ELM) [4] where the basis
functions are fitted taking into account the information
retrieved from Principal Components Analysis. The PCA-
ELM algorithm sets the number of basis functions by
determining the amount of principal components (or-
thogonal vectors) necessary to explain the 90% of the
variance in the training set. The output node parame-
ters are determined analytically using the Moore-Penrose
generalized inverse as in the base ELM algorithm. This
approach considerably decreases the computational cost
compared to later ELM improvements, since no cross-
validation is needed, and statistically outperform them.

On the other hand, Linear Discriminant Analysis
(LDA) has been used to reduce the dimensionality of
the problem while maintaining the discriminability be-
tween pre-defined classes [20]. The mathematical model
of the LDA is a linear combination of the input patterns
and the projections generated in the LDA. In the LDA
algorithm, W € RS x R¥ is the matrix correspond-
ing to the S largest eigenvectors of the matrix S 1Sy,
where S,, is the within class scatter matrix and Sy is
the between class scatter matrix. Sy, is computed as
the covariance matrix of the classes mean values while
Sw is computed as the average of the classes covari-
ance matrices. Thus it is assumed that the scatter of
the data within class is the same for each class, unreal-
istic assumption in practical problems, that still is able
to lead to good performances in practical classification
tests where the reduced LDA model is as effective or
even more effective than the original one. Fig. 1 reports
a 2 dimensional, 2 classes problem and the correspond-
ing first PCA and LDA basis vectors. Clearly, as seen
in this example, the two basis vectors define different
projections and in particular, the projection of patterns
onto the first LDA basis vector, is, in general, more ef-
fective in discriminating between classes than the one
provided by the first PCA vector.

This can be explained by the fact that the LDA al-
gorithm makes direct use of the between classes covari-
ance information while the PCA algorithm deals with
the data as a whole, without including information on
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Fig. 1: Comparison of projections of PCA and LDA
in a two-class classification problem: The classes are
better separated by the projection onto the first LDA
basis vector (w) than the projection onto the first PCA
eigenvector.

the underlying class structure, into its analysis. Moti-
vated by this fact, the LDA-PCA-ELM algorithm has
been proposed, where the main difference with respect
to the PCA-ELM method is that the hidden layer has
been enlarged to include additional nodes for the LDA.
It will be shown that the hybrid LDA-PCA approach
in the ELM framework can improve the generalization
performance of the model with respect to the two sin-
gle analysis (PCA-ELM and LDA-ELM). This is due
to the collaborative transformations applied by the two
different analysis in the hidden nodes: while the LDA
algorithm operates towards a better discrimination be-
tween classes the PCA algorithm prefers a wide cover-
age of the data space.

The paper is organized as follows: A background of
LDA and PCA is given in Section 2. The methodology
to optimize the SLFN parameters based on ELM and
the joined LDA-PCA is presented in Section 3. Section 4
describes the experimental framework adopted to eval-
uate the effectiveness of the method. Section 5 explains
the results obtained. Finally, Section 6 summarizes the
conclusions of the presented work.

2 Linear Discriminant Analysis and Principal
Component Analysis

As previously stated, the main contribution of this work
is the extension of the previously proposed PCA-ELM
algorithm [4] by the Linear Discriminant Analysis (LDA)
technique. The goal of this section is to establish the
main differences of these two techniques. First the LDA

algorithm will be introduced and afterwards the PCA
method will be described.

Note that the LDA technique uses the information
of the targets in a classification problem. Because of
that, the classification context is described. In a classifi-
cation problem, given a single pattern x = (z1,...,2x) €
RE its corresponding class label y € {C1,Ca,...,Cs}
needs to be assessed, according to the learning per-
formed on the available dataset. The training dataset
D ={X,Y} = {(xn,yn)})_; is considered, where x,, =
@0, ..., 2)) € RE is the vector of measurements,
and y, € R’ is the known class level of the n-th pat-
tern. In this work, the common technique to represent
class levels using the “l-of-J” encoding vector is as-
sumed, hence y,, = (ysll),y,(lz),...,yr(f)) with yﬁbj) =1
in case x,, is a pattern classified as class C;, 0 otherwise.

2.1 Linear Discriminant Analysis

LDA is a method used in pattern recognition and ma-
chine learning to define a linear combination of fea-
tures able to discriminate between two or more classes
of patterns. LDA is also closely related to PCA which
also seeks for linear combinations of features with the
purpose of better separate the patterns. However the
main difference between the two approaches is that
LDA explicitly attempts to model the difference be-
tween classes while PCA does not use targets informa-
tion to perform the transformations.

By applying LDA, the projections that maximize
the distance between patterns of different classes and
minimize the distance between patterns of the same
class are found. In another words, the maximization of
the between-class scatter matrix Sy,, together with the
minimization of the within-class scatter matrix Sy, in
the projective subspace is performed. The within-class
scatter matrix Sy, € R¥ x R¥ and the between-class
scatter matrix Sy € RX x RX are defined as:

921
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Z(X—icj)(x—icj),r, (1)

j=1xec;
J
Sp =) (Xe, —%)(Xe, —%)7, (2)
j=1
where X¢, = (1/1\/_7»)2)(603_ x is the mean of the j-th

class with NNV; the number of patterns belonging to it,
x = (Yn) Zi\;l x; is the mean of all patterns and J
is the number of classes. The goal is to maximize the
variance between classes while minimizing the variance
within class

J(W) = argmax
w

(WTSbW> . 3)

WTS, W
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It has been proved already in [9] that, if Sy, is a
non singular matrix, then the maximum is attained by
the matrix W that has as column vectors the nonzero
eigenvectors of the matrix S;'Sy,, and they are at most
J — 1. Hence the subspace for LDA is spanned by the
set of vectors

W = {W],WQ,...’ijl} e RE x R/7L.

The main characteristics of LDA are:

— The new variables generally presents high separabil-
ity between patterns of different classes and great
union between same class ones.

— At most produces J — 1 feature projections.

2.2 Principal Component Analysis

PCA technique is an orthogonal transformation of the
feature space that aims to find a set of linearly uncor-
related components that better describes the variance
between the data. In particular, the principal compo-
nent is the vector that accounts for the greatest vari-
ance while the following components are chosen with
the same criteria but with the orthogonality constraint.
Mathematically those vectors are the eigenvectors cor-
responding to the largest eigenvalues of the dataset co-
variance matrix. The data are further projected onto a
subset of those directions for dimensionality reduction.

If the matrix whose columns are the eigenvectors
sorted according to the ascending order of the corre-
sponding eigenvalues is denoted by U € R¥ x RE | the
PCA transformation of the data is

X =UTX,

where X = (x1,...,xy) € R® x R" denotes the pat-
terns matrix. By selecting only the first d rows of X
(with d < K), the data have been projected from K
down to d dimensions.

The PCA technique has been traditionally imple-
mented by the application of the Singular Value De-
composition (SVD) of the patterns matrix X, defined
as

X =ZxV”

where V € RN x RN and Z € R¥ x RX are orthonor-
mal matrix, ¥ € RX x R is a pseudo-diagonal matrix
whose diagonal entries are ordered in a descending order
and they correspond to the eigenvalues of the X matrix
and the values outside the diagonal are zero. The eigen-
vectors of the covariance matrix C' = (1/n—1)XTX are
computed from the V matrix since

X™X =VvxzTzevT = vx2vT

and then

_ L 2vT
C(N_l)VEV .

Being C' symmetric it stands that
C=VAVT

where A is the diagonal matrix with eigenvalues of C
as entries values on the diagonal and the column of
V' as the corresponding eigenvectors. The eigenvalues
and eigenvectors of the covariance matrix of the pattern
matrix can then be easily computed by the elements of
the SVD decomposition.

It is important also to stress the attention on the ne-
cessity of performing the mean subtraction (also called
“mean centering”) to ensure that during the PCA anal-
ysis, the first principal component is not too close to the
mean of the data, but describes the direction of maxi-
mum variance.

The main characteristics of PCA can be summarized
as:

— The features in the projected space are uncorre-
lated.

— The covariance matrix represents only second order
statistics among the vector values.

— Maximize variance of patterns in the projected space.

2.3 Why LDA can outperform PCA for classification
tasks?

First of all, it is worth mentioning that in a classifica-
tion problem of dimension K and J classes, the PCA
methods estimate K projections while the LDA method
finds J — 1 projections. As previously noted, LDA uses
targets information to improve the performance of the
algorithms that applies LDA with respect to the same
algorithms that instead makes use of PCA. To justify
the proposed combination of LDA and PCA for clas-
sification, the example in Fig. 1 is discussed. As can
be seen, the patterns are distributed in a particular
and not uncommon way. The PCA tries to maximize
data variance while LDA finds the best projection that
separates the classes. A joined combination of the two
approaches can help in preserving distinction between
classes and a good spread of the patterns within each
class.

Due to the intuitive characteristics of LDA for clas-
sification and the results obtained in previous works [4],
where PCA transformations were included in the ELM
framework, the integration of LDA into the PCA-ELM
model is here proposed and discussed.
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3 The proposed Method: Linear Discriminant
Analysis-Principal Component Analysis
Extreme Learning Machine (LDA-PCA-ELM)

The goal of this section is to describe the proposed
method, named Linear Discriminant Analysis-Principal
Component Analysis Extreme Learning Machine (LDA-
PCA-ELM). As shown in the experimental section, the
algorithm is a suitable option to estimate the param-
eters of SLFN. A SLFN is a type of neural network
composed by three layers: a input, a hidden and an
output layer. Let’s denote with a, = (a,a3,...,a5%)T
the weight vector connecting the input units to the s-th
hidden unit, s = 1,...,5, and 87 = ( {,B;...,ﬂg)T
is the weight vector connecting the hidden nodes to the
j-th output node Vj = 1,2,...,J. During the training
process the optimal parameters: a®, and 37, are deter-
mined so that they minimize the Squared Error (SE)
function defined by:

N J _
SE =33 (f(xn) — )2, (4)
n=1 j=1

where f;(x,) is the estimated output of the j-th class
for the n-th input pattern, which is defined as:

S
fi(xn) = Bloa(xn;a’) (5)

where ¢;(x,;a%) is the sigmoidal activation function
in this work. The minimization of the squared error
function in the ELM is achieved solving the following
linear system:

HB =D, (6)

where H is known as the hidden layer output matrix of
the SLFN and defined as:

H = (hy,hy,...,hg) =
¢1(x1;al) ... ¢S(x1;as)
= , (7)
¢1(X7"«;a1) ¢S(Xn;as) RN xRS
y: (y1;y27"'7Y’ﬂ)]£N><]RJ? (8)
and
B=(8"8%....8 )zsxrs 9)

In the case of the standard ELM framework pro-
posed by Huang et. al. [17] the parameters connecting
the input layer to the hidden layer (a®, Vs = 1,...,5)

are randomly determined, while the weights for the out-
put layer are analytically computed using the Moore-
Penrose pseudoinverse matrix.

The main contribution of the proposed algorithm
(LDA-PCA-ELM) is the initialization of the weights
connecting the input layer to the hidden layer. In the
LDA-PCA-ELM algorithm, these weights are initialized
according to the combined LDA and PCA methods fit-
ting the biases to zero. The LDA-PCA-ELM algorithm
can be viewed as a two-stage algorithm as shown in Fig.
2.

3.1 Estimation of the hidden layer parameters

The first step of the LDA-PCA-ELM algorithm is the
execution of the LDA and PCA algorithm over the
data in the training set. Then, the parameters a®, s =
1,...,5 are initialized according to the basis projec-
tion vectors generated by both the LDA and PCA ap-
proaches. Taking into consideration that the maximum
number of projections generated by the LDA are J — 1
and the maximum number of projections generated by
the PCA are K, the maximum number of basis func-
tions to be included in the SLFN is J — 1 + K. Hence
Sell,J-1+K].

The next step is the pruning step: in this work it
is considered that the basis functions to be included
in the SLFN must explain the 90% of the variance of
the data in both approaches. This method prunes the
model using the same mechanism used by PCA-ELM.
Therefore, only those S; basis functions that explain
90% or more of the variance of the data in the training
set out of the J —1 possible basis functions are included
in the model for the LDA case and S5 basis functions
that explain 90% or more of the variance of the data
in the training set out of the K possible basis functions
are included in the model for the PCA case. Hence

S =51+ 5.

This deterministic technique to set the number of
hidden nodes rises the complexity of the model with
respect to random-based initialization of the ELM al-
gorithms.

After that, the LDA-PCA-ELM proceeds by choos-
ing an activation function ¢(x) to generate the hidden
layer output matrix H. Among the existing hidden node
types, the one composed by a linear activation function
and a transfer function are considered in this work. Be-
cause of this, any hidden node that is compounded by
a linear combination as the activation function may be
taken into consideration as a suitable choice to be used



O©CoO~NOOOITA~AWNPE

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A. Castano et al.

D= {X,y} = {Xnvyn}'r]:rZI

‘ Estimation of the the hidden layer parameters ‘

LDA Transformation
PCA Transformation
Number of Basis Functions

Computation of the hidden layer output matrix

‘ EStimatiOn Of the the Output 1ayer parameters ‘ {Mooml’muosc pseudo inverse matrix

V= BH Neural Network Model

Fig. 2: LDA-PCA-ELM Framework () is the estimated outputs of the model)

in the hidden layer of the SLFN. Some of the most com-
mon hidden nodes with a linear activation function are
mentioned hereafter:

— Sigmoidal Function (Sig): in particular, the special
case of the logistic function, defined as:

1

~ T ep( ) 1o

sig(n)
— Hard-limit transfer function (Hardlim): it returns
one for nonzero negative values, zero otherwise:

1ifn>0
0 otherwise

hardlim(n) = { (11)

— Sine (Sin): it returns zero for values close to 2K.

In order to validate our algorithm and for the sake
of simplicity the experiments are only done using sig-
moidal nodes in the hidden layer.

3.2 Estimation of the output layer parameters

Finally, the estimation of the output layer weights is
done as proposed by Huang [17], solving the linear sys-
tem HB3 = ) using the Moore-Penrose generalized in-
verse. In this way, the values of the 3 parameters are
estimated as:

B=H'Y (12)

where HT is the Moore-Penrose generalized inverse of
the hidden layer output matrix. It has also been shown
that this solution is the least-square solutions of the
general linear system HB = ), therefore it minimizes
the training error. Moreover it is unique, and has the
smallest norm of weights, hence having also good gen-
eralization performance [17,5].

Table 1 summarizes the algorithmic steps of the base
ELM algorithm and the LDA-PCA-ELM method and
highlights their main differences.

3.3 Discussion about the Advantages of the
LDA-PCA-ELM

The LDA-PCA-ELM proposed algorithm is an exten-
sion of the previously proposed PCA-ELM algorithm
and it inherits some of the most important advantages
of the PCA-ELM and the good properties of LDA with
respect to the state-of-the-art ELM approaches:

1. The algorithm is deterministic instead of stochastic.
This implies that the algorithm does not present
a high standard deviation of its performance and
model complexity as OP-ELM and other algorithms
do.

2. Previously proposed approaches determine the op-
timal number of basis functions by growing or prun-
ing techniques. These techniques are generally hard
time consuming. The proposed approach determines
the amount of hidden nodes taking into considera-
tion the cumulative variance expressed in the LDA
and PCA algorithms.

The main drawback of the proposed method with
respect to the PCA-ELM is that PCA-ELM can ap-
plied to regression and classification problems, while
LDA-PCA-ELM can be applied only to classification
problems because LDA uses information of the targets,
trying to maximize the distance between classes and
minimize the distance within class.

4 Experimental Framework

In this section, the setting of the experimental study
performed is presented. Section 4.1 lists the datasets
tested; Section 4.2 provides a description of the met-
rics used to evaluate the performance of the algorithms;
Section 4.3 presents the list of algorithms implemented
for comparison together with their parameters; finally,
Section 4.4 describes the statistical tests performed to
validate the obtained results.
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ELM LDA-PCA-ELM
1. Assign arbitrary input weights a®, s =1,...,S. 1. Execute LDA and PCA over the training set.
2. Calculate the hidden layer output matrix H. 2. Select the optimal number of transformations.
3. Calculate the output weights 3: 8 = HT Y. 3. Calculate the hidden layer output matrix H.
4. Icul h, igh B =HTY.
where H, B and ) are as defined before. Calculate the output weights 3: 8 Y
Table 1: Main differences of the ELM algorithm with respect the LDA-PCA-ELM algorithm
4.1 Datasets considered Dataset Size R B N In Out Distribution
Hepatitis (HEP) 155 6 13 — 19 2 (32,123)
_ Heart (HEA) 270 13 — — 13 2 (150, 120)
The proposed algorithm was tested on fifteen datasets Breast (BRE) 28 15 — — 15 2 (215,71)
taken from the UCI repository [1]. The datasets selected =~ Haberman (HAB) 306 3 — — 3 2 (225,81)
" b blems lticlass Droblems Ionos ION) =~ 351 33 1 — 34 2 (126, 225)
range from 1nary. pro ems o multi-class problems, Vote (VOT) 135 - 16 — 16 2 (267, 168)
they present a variety of size, number of features and Card (CAR) 690 6 4 5 51 2 (307,383)
number of classes. Table 2 summarizes the characteris- BreastW (BRW) 699 9 — — 9 2 (524,175)

. . . Diabetes (DIA) 822 8 — — 8 2 (576,246)
tics of the datasets used. In particular the size of the German (GER) 1000 6 3 11 61 2 (700, 300)
datasets vary from 90 to 3175 patterns, the number of Post-Op (POP) 90 1 — 7 20 3 (2,24,64)

. Gene (GEN) 3175 — — 60 120 3 (765,765, 1648)
féatures ?anges from 3 to 120. .The}.f have been paI:tl Lymph (LYM) 148 3 9 6 38 4 (2,81, 61,4)
tioned using a hold-out cross-validation procedure with Ecoli (ECO) 336 7 - 7 8 (143,77,52,35,20,5,2,2)
3/4 - n instances for the training dataset and n/4 in- Yeast (YEA) 1484 8 — — 8 10  (463,429,30,163,51,

44, 35,244, 20, 5)

stances for the generalization set. To account for the
aleatory nature of the ELM stochastic approaches !,
those algorithms were run 30 times for each problem.
The ELM deterministic approaches (PCA-ELM, LDA-
ELM and LDA-PCA-ELM algorithms) were run just
one time per dataset. In addition, instances with miss-
ing values have been discarded before the execution of
the methods over the datasets and the whole set of val-
ues have been normalized in the interval [0, 1] to uni-
form the sensitivity of attributes with different range
domains.

4.2 Evaluation metrics

Two metrics were used to assess the performance of
each method:

— Accuracy rate (Acc): It is the number of success-
ful hits (correct classifications) relative to the total
number of classifications. It is the most widely used
metric.

— Number of Hidden Nodes (N HN): In this work
we use the NHN to measure the complexity of
the neural networks models. Taking into account
that all the methods considered work with fully con-

1 By ELM stochastic approaches we are naming to those
ELM-based methodologies where the hidden layer parameters
are randomly initialized. In this study the only deterministic
methodologies considered are those that initialize the hidden
layer parameters according to the LDA or PCA projections
(or a combination of both)

All nominal variables are transformed to binary variables.

Table 2: Characteristics of the datasets used for the ex-
periments: number of instances (Size), number of Real
(R), Binary (B) and Nominal (N) input variables, total
number of inputs (In.), number of classes (Out.), and
per-class distribution of the instances (Distribution)

nected neural networks, the N H N is a robust metric
to estimate the complexity of the model.

Additionally, the time required to estimate the pa-
rameters of each method has been also considered. The
time (7) is the simplest way to estimate the compu-
tational efficiency of the methods. The average time
elapsed (in seconds) is considered, this includes cross-
validation, training and test time.

4.3 ELM algorithms selected

The proposed method (LDA-PCA-ELM) is compared
to the following ELM approaches:

— The Cross-Validated original Extreme Learning Ma-
chine (ELMcy) [17]. In this method, the number of
hidden nodes in the base ELM algorithm has been
selected by a nested five fold cross-validation proce-
dure over the training set, i.e., once the lowest cross-
validation error alternative was obtained, it was ap-
plied to the complete training set and test results
were extracted. The criteria for selecting the best
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configuration was the Acc performance. The values
considered in the cross-validation procedure were
{10,20,...,100}. The sigmoidal non linear trans-
formation was the basis function considered for the
hidden layer.

The Optimally Pruned Extreme Learning Machine
(OP-ELM) [21]. The OP-ELM extends the original
ELM algorithm wrapping it around with a method-
ology that prunes the hidden neurons, leading to a
more robust overall algorithm. Again, the sigmoidal
non-linear transformation was the one considered in
this study. The number of nodes (S) in the hidden
layer in the OP-ELM algorithm is set at the begin-
ning to 100, since this algorithm prunes the useless
neurons from the hidden layer.

The Cross-Validated Evolutionary Extreme Learn-
ing Machine (E — ELMcy) [30,3,24] improves the
original ELM by using a Differential Evolution (DE)
algorithm [26] and determines the optimal number
of hidden nodes by a cross-validation procedure.
The E — ELMc¢y uses the evolutionary technique to
optimize the input weights and the Moore-Penrose
generalized inverse to analytically determine the out-
put weights.

In the same way as in the ELM algorithm, the most
critical parameter in the E — ELM¢y algorithm is
the number of the hidden nodes, S. The number of
hidden nodes was selected with a cross-validation
procedure based on a set of nodes multiple of 10
({10, 20, ...,100}). To widely explore the search space
a populaion of 100 individuals is used in the evolu-
tionary procedure, for a maximum number of gener-
ations equal to 50. The E — ELM¢y algorithm has
been implemented using the sigmoidal unit as the
basis function in the hidden layer.

The Incremental Extreme Learning Machine (I-ELM)
[15]. This algorithm proposes a procedure that in-
creases the network architecture adding random nodes
till the residual error is bigger than a threshold. This
threshold must be set in advance and its value is
very sensible to the number of patterns and classes.
The algorithm was initially proposed for regression
but can be extended for classification.

The Pruned Extreme Learning Machine (P-ELM)
[23] uses statistical methods to measure the rele-
vance of hidden nodes. Hidden nodes are ranked us-
ing statistical techniques such as chi-square and in-
formation gain. Irrelevant nodes are then pruned by
considering their relevance to the class labels. The
optimal number of hidden nodes is estimated con-
sidering the performance of the classifier on a (strat-
ified) validation set constructed with the 25% of the
training set patterns as suggested by the authors.

— The Error Minimized Extreme Learning Machine
(EM-ELM) [7]. The main difference of this algo-
rithm with respect to the I-ELM method resides in
the computation of the output layer weights which
are estimated with the goal of improving the com-
putational burden of the previously mentioned al-
gorithm. The algorithm is strongly sensitive to an
error threshold parameter which depends on number
of patterns, classes and hidden nodes. A hyper pa-
rameter was introduced in the model to implement
a fair experimental comparison with respect to the
remaining methods. The new hyper-parameter was
defined as the relative error with respect to the num-
ber of patterns and classes. The hyper-parameter
space was explored by considering a cross-validation
procedure based on a set of hidden nodes multiple
of 10 ({10,20,...,100}).

— The Principal Component Analysis Extreme Learn-
ing Machine (PCA-ELM) [4]. This algorithm does
not have any hyper-parameter to be estimated by
cross-validation. As explained before, the number
of hidden nodes, S, is estimated according to the
accumulated variance expressed into the eigenvec-
tors.

— The Linear Discriminant Analysis Extreme Learn-
ing Machine (LDA-ELM). This algorithm has been
also included to prove that the combination of LDA
and PCA is able to outperform its single counter-
parts.

4.4 Statistical Tests

Hypothesis testing techniques is a useful tool to statisti-
cally interpret the results obtained in the experimental
study and discriminate between methods according to
their performance [6]. Non parametric tests have been
chosen over parametric ones, for this specific case, be-
cause the initial conditions that guarantee the reliabil-
ity of the second ones may not be satisfied, entailing
the statistical analysis to lose plausibility.

In particular, the Friedman pre-hoc test, is used. Its
application can outline significant differences between
the methods tested. Moreover The Holm posthoc pro-
cedures will detect which algorithms are significant to
be used for comparisons.

5 Experiments

5.1 Analysis of generalization performance

For the sake of simplicity, only the graphical and the
summary of the statistical results achieved are included,
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whereas the complete results can be found at the url
www.esa.int/act/LDA-PCA-ELM.zip.
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Fig. 3: Graphical results of the generalization perfor-
mance

In the scatterplot of Fig. 3, each point compares
LDA-PCA-ELM to another methodology on a single
dataset. LDA-PCA-ELM was considered as the base
method because it reported the best mean results. The
x-axis position of the point is the mean performance of
LDA-PCA-ELM of one dataset, and the y-axis position
is the performance of the compared algorithm (using
Acc). Therefore, points below the y = z line correspond
to datasets for which LDA-PCA-ELM performs better
than the other algorithm when the metric should be
maximized (Acc) and points above the y = x line rep-
resent to datasets for which LDA-PCA-ELM achieves
a better performance than the compared method when
the metric should be minimized (N HN metric). As can
be seen in Fig. 3, the LDA-PCA-ELM is a competitive
methodology if it is compared to the most promising
approach (the PCA-ELM method). From the analysis
of the results (Table 3), it can be concluded that the
LDA-PCA-ELM model produces the best mean rank-
ing in Acc (Rpac. = 2.10), reporting also the highest
mean accuracy (Acc = 82.91%).

The non-parametric Friedman test [10], using as test
variable the Acc value computed in the generalization
set of the best models, has been performed to deter-
mine the statistical significance of the rank differences
reported for each method in the different datasets. The
test shows that the effect of the method used for classi-
fication is statistically significant at a significance level
of 10%.

Based on this rejection, the Holm post-hoc test was
used to compare all classifiers with a control method

9

Method Acc  Race z-statistic p-value QHolm
LDA-ELM 63.35 7.00 4.90 0.000 0.012
EM-ELM 77.85 6.06 3.96 7.0E-5 0.014
OP-ELM 77.43 5.73 3.63 2.8E-4 0.016
ELMcv 78.51 5.13 3.10 0.001  0.020
I-ELM 78.50 5.06 3.03 0.024 0.025

E — ELMcv 78.99 5.20 2.96 0.030 0.033
P-ELM 78.49 4.86 2.76 0.005  0.050
PCA-ELM 80.63 3.70 1.73 0.080 0.100

LDA-PCA-ELM 82.91 2.10 - -

Best results in bold face; second best in italics

Table 3: Statistical results using Acc as the variable
test: Mean Acc in the generalization set (Acc), mean
ranking (Racc), 2-statistic for the Holm post-hoc test,
p-value and corrected alpha (ay,,,,) for the same test

[12]. For the experiments carried out, the control method
selected is the one reporting the best mean ranking in
Acc, the LDA-PCA-ELM method. The results of the
Holm test for a = 0.10 can be seen in Table 3. By us-
ing a level of significance a = 0.10, LDA-PCA-ELM
is significantly better than the rest of the algorithms
considered except PCA-ELM.

5.2 Analysis of model complexity

In this section, a graphical plot of the number of hid-
den nodes (NHN) is shown. Fig. 4 is the scatter plot
representation of the NHN included in each model for
the methodologies considered. As can be seen in Fig.
4, the LDA-PCA-ELM is a competitive method when
compared to the state-of-the-art ELM methods. As can
be seen the most algorithms are located over the diago-
nal line indicating that are more complex models. From
a purely descriptive point of view, we can see how the
LDA-PCA-ELM methods obtains the third best mean
ranking and overall NHN (Table 4). The additional
performance gains for including the LDA transforma-
tions in the hidden layer justifies the inclusion of these
transformation in the final model (despite on increase
in the model complexity).

It is necessary though to determine if there are dif-
ferences in the mean ranking of NHN. Hence another
non-parametric Friedman test has been performed, show-
ing that the effect of the method used for classification
is statistically significant at a significance level of 10%,
as the confidence interval is Cy = (0, Fy.05 = 2.02) and
the F-distribution statistical values are F* = 45.12 ¢
Coy for NHN. Accordingly, the null-hypothesis stating
that all algorithms perform equally in mean ranking is
rejected.

On the basis of this rejection, the Holm post-hoc
test is used to compare all the methods to a given con-
trol method. The differences in rankings between the
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Fig. 4: Graphical results of the complexity of the models
considered (according to the number of hidden nodes,
NHN)
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Method NHN Ryun z-statistic p-value oy

I — FELM 80.57 1.33 7.53 0.000 0.012

EM — ELM 41.16  3.13 5.73 0.000 0.014

ELMcv 37.33 3.63 5.23 0.000 0.016

E - ELMc¢cy 36.67 3.76 5.1 0.000 0.020

OP-ELM 38.99 4.30 4.56 2.0E-5 0.025

P-ELM 26.82 5.93 2.93 0.003  0.033

LDA-PCA-ELM 18.93 6.30 2.56 0.102  0.050

PCA-ELM 16.80 7.73 1.13 0.257  0.100
LDA-ELM 2.06 8.86 - - -

Best results in bold face; second best in italics

Table 4: Statistical results using NHN as the variable
test: Mean N H N selected in the training step (NHN),
mean ranking (Rxun), z-statistic for the Holm post-hoc
test, p-value and corrected alpha (ag,,,,) for the same
test

different algorithms and the results of the Holm test
for « = 0.100 is reported in Table 4, using the corre-
sponding p-values. By using this test, it can be seen that
the LDA-ELM method significantly outperforms the re-
maining methods (excepts the PCA-ELM method).

5.3 Time Complexity Analysis

The time complexity of the proposed algorithm is an-
alyzed in this subsection. The LDA-PCA-ELM algo-
rithm is composed by three main time consuming tasks:

— Computation of the LDA vectors.

— Computation of the PCA eigenvectors.

— Determination of the Moore-Penrose pseudo-inverse
matrix.

The LDA has O(nkt + t3) time complexity and re-
quires O(nk + nt + kt) memory, where n is the number

O(nk?) time complexity. Obviously, the proposed ap-
proach (LDA-PCA-ELM) is more time consuming that
the baseline algorithm considered (PCA-ELM), taking
into account that n >> k in most of the real-world ap-
plications and that it requires the computation also of
the LDA vectors. Finally, the inversion of a size N x N
matrix has a complexity of O(N?log(N)).

Table 5 reports the average running time (consid-
ering also the cross-validation and the test time) of
the algorithms considered. All the experiments were
run using a common Matlab framework proposed in
[8,24]. The proposed algorithm was developed and in-
cluded in the above-mentioned framework. In general,
the most efficient algorithm is the base ELM. Despite
this, the proposed method achieved a competitive com-
putational time, specially if it is compared to EM-ELM?,
OP-ELM and E — ELM¢y algorithms.

5.4 Sensitivity Analysis

The proposed algorithm relies mainly on only one hy-
peparameter: the Percentage of Variance Explained (PVE)
by the LDA and PCA projections, used to determine
the Number of Hidden Nodes (NHN). In the experi-
mental study, the number of projections considered are
those that explain the 90% of PVE. A study has been
performed to analyze the sensitivity of the model, in
terms of Accuracy (Acc), with respect to this hyper-
parameter (percentage of variance explained) to justify
the setup decision. The datasets selected for the study
are those with the maximum number of possible projec-
tions (those with the maximum value of J —1+ K) and
they are: the Card (52 possible projections), Tonos (35
possible projections), Gene (122 possible projections)
and German (62 possible projections) datasets. Several
runs of the LDA-PCA-ELM algorithm have been per-
formed for values of the the hyperparameter ranging in

2 The computational burden of EM-ELM was seen severely
affected by the estimation of the threshold parameter
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Fig. 5: Hypeparameter study on Acc for the LDA-PCA-
ELM algorithm and the PVE parameter.

Results are reported in Fig. 5. As expected the gen-

100

eralization performance of LDA-PCA-ELM tends to mono-

tonically increase with the PVE. In general, as observed
from Fig. 5, the best performance values are obtained
with a PVE of 90% (which is also true for the other
datasets). There is only few exceptions to this rule and
all of them would lead to slightly increase the gen-
eralization performance by increasing significantly the
NHN. For example, for the Gene dataset, the model
gets a 84.23% of generalization performance for PVE
equal to 90% and a 86.12% of generalization perfor-
mance for PVE equal to 100%. However in the first case
NHN = 100 while in the second case NHN = 122.
Therefore, in order to reduce the complexity of the al-
gorithm, the PVE parameter can be directly set to 90%.

6 Conclusions

In this work, the Linear Discriminant Analysis-Principal
Component Analysis-Extreme Learning Machine (LDA-
PCA-ELM) algorithm is proposed. As shown in the
experiments, the proposal is a fast and robust ELM-
based algorithm. The LDA-PCA-ELM algorithm esti-
mates the parameters of the hidden layer according to
the eigenvector and the projections generated by the
PCA and LDA algorithms respectively. As in the base
ELM method, the weights connecting the hidden and

the output layer are estimated analytically according
to the Moore-Penrose pseudo-inverse matrix. The pro-
posed algorithm is validated using fifteen well-known
classification datasets. The results obtained are statis-
tically compared using the Holm and Friedman tests.
This statistical analysis indicates that the proposed ap-
proach is a competitive method in time and in number
of hidden nodes, improving the previous methods es-
pecially in overall accuracy. The main limitation of the
methodology proposed with respect to traditional ELM
approaches is that ELM algorithms can be applied to
several problems including classification and regression
problems or even to unsupervised learning problems
while LDA-PCA-ELM algorithm can be applied only
to classification problems because LDA needs informa-
tion about the classification labels.
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