Skip to main content
Log in

An efficient chaotic water cycle algorithm for optimization tasks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Water cycle algorithm (WCA) is a new population-based meta-heuristic technique. It is originally inspired by idealized hydrological cycle observed in natural environment. The conventional WCA is capable to demonstrate a superior performance compared to other well-established techniques in solving constrained and also unconstrained problems. Similar to other meta-heuristics, premature convergence to local optima may still be happened in dealing with some specific optimization tasks. Similar to chaos in real water cycle behavior, this article incorporates chaotic patterns into stochastic processes of WCA to improve the performance of conventional algorithm and to mitigate its premature convergence problem. First, different chaotic signal functions along with various chaotic-enhanced WCA strategies (totally 39 meta-heuristics) are implemented, and the best signal is preferred as the most appropriate chaotic technique for modification of WCA. Second, the chaotic algorithm is employed to tackle various benchmark problems published in the specialized literature and also training of neural networks. The comparative statistical results of new technique vividly demonstrate that premature convergence problem is relieved significantly. Chaotic WCA with sinusoidal map and chaotic-enhanced operators not only can exploit high-quality solutions efficiently but can outperform WCA optimizer and other investigated algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, Hoboken

    Book  Google Scholar 

  2. Yildiz AR (2009) A new design optimization framework based on immune algorithm and Taguchi’s method. Comput Ind 60:613–620

    Article  Google Scholar 

  3. Yildiz AR (2008) Optimal structural design of vehicle components using topology design and optimization. Mater Test 50:224–228

    Article  Google Scholar 

  4. Rahimi S, Roodposhti MS, Abbaspour RA (2014) Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ Earth Sci 72:1979–1992

    Article  Google Scholar 

  5. Jordehi AR (2015) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  6. Abbaspour RA, Samadzadegan F (2011) Time-dependent personal tour planning and scheduling in metropolises. Expert Syst Appl 38:12439–12452

    Article  Google Scholar 

  7. Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13:1433–1439

    Article  Google Scholar 

  8. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26:327–333

    Article  Google Scholar 

  9. Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210:81–88

    Article  Google Scholar 

  10. Jordehi AR (2014) Particle swarm optimisation for dynamic optimisation problems: a review. Neural Comput Appl 25:1507–1516

    Article  Google Scholar 

  11. Jordehi AR (2015) Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  12. Jordehi AR (2015) A review on constraint handling strategies in particle swarm optimisation. Neural Comput Appl 26(6):1265–1275

    Article  Google Scholar 

  13. Jiang BLW (1998) Optimizing complex functions by chaos search. Cybern Syst 29:409–419

    Article  MATH  Google Scholar 

  14. Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59:367–376

    Article  Google Scholar 

  15. Rezaee Jordehi A, Jasni J (2013) Parameter selection in particle swarm optimisation: a survey. J Exp Theor Artif Intell 25:527–542

    Article  Google Scholar 

  16. Jordehi AR, Jasni J (2015) Particle swarm optimisation for discrete optimisation problems: a review. Artif Intell Rev 43(2):243–258

    Article  Google Scholar 

  17. Yildiz AR (2013) Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int J Adv Manuf Technol 66:1319–1326

    Article  Google Scholar 

  18. Jordehi AR (2015) Optimal setting of TCSC’s in power systems using teaching-learning-based optimisation algorithm. Neural Comput Appl 26(5):1249–1256

    Article  Google Scholar 

  19. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  20. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm for solving multi-objective optimization problems. Soft Comput 19(9):2587–2603

    Article  Google Scholar 

  21. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures. Comput Struct 149:1–16

    Article  Google Scholar 

  22. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput 30:58–71

    Article  Google Scholar 

  23. Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298

    Article  Google Scholar 

  24. Sadollah A, Eskandar H, Yoo DG, Kim JH (2015) Approximate solving of nonlinear ordinary differential equations using least square weight function and metaheuristic algorithms. Eng Appl Artif Intell 40:117–132

    Article  Google Scholar 

  25. Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Stehlik J (1999) Deterministic chaos in runoff series. J Hydrol Hydromech 47:271–287

    Google Scholar 

  27. Xu C, Duan H, Liu F (2010) Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning. Aerosp Sci Technol 14:535–541

    Article  Google Scholar 

  28. Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319

    Article  MathSciNet  MATH  Google Scholar 

  29. Jothiprakash V, Arunkumar R (2013) Optimization of hydropower reservoir using evolutionary algorithms coupled with chaos. Water Resour Manage 27:1963–1979

    Article  Google Scholar 

  30. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  31. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  32. Fister I, Perc M, Kamal SM (2015) A review of chaos-based firefly algorithms: perspectives and research challenges. Appl Math Comput 252:155–165

    MathSciNet  MATH  Google Scholar 

  33. Li C, An X, Li R (2015) A chaos embedded GSA-SVM hybrid system for classification. Neural Comput Appl 26:713–721

    Article  Google Scholar 

  34. Liao GC, Tsao TP (2006) Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Trans Evolut Comput 10:330–340

    Article  Google Scholar 

  35. Jordehi AR (2014) A chaotic-based big bang–big crunch algorithm for solving global optimisation problems. Neural Comput Appl 25:1329–1335

    Article  Google Scholar 

  36. Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699

    MATH  Google Scholar 

  37. Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340

    Article  MathSciNet  MATH  Google Scholar 

  38. dos Santos Coelho L, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913

    Article  Google Scholar 

  39. Jordehi AR (2015) Seeker optimisation (human group optimisation) algorithm with chaos. J Exp Theor Artif Intell 1–10. doi:10.1080/0952813X.2015.1020568

  40. Jordehi AR (2015) A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems. Neural Comput Appl 26(4):827–833

    Article  Google Scholar 

  41. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25:1077–1097

    Article  Google Scholar 

  42. Schuster HG, Just W (2006) Deterministic chaos: an introduction. Wiley, Hoboken

    MATH  Google Scholar 

  43. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085

    MathSciNet  MATH  Google Scholar 

  44. Hilborn RC (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  45. He D, He C, Jiang LG, Zhu HW, Hu GR (2001) Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans Circuits Syst I Fundam Theory Appl 48:900–906

    Article  MathSciNet  MATH  Google Scholar 

  46. Erramilli A, Singh R, Pruthi P (1995) An application of deterministic chaotic maps to model packet traffic. Queueing Syst 20:171–206

    Article  MathSciNet  MATH  Google Scholar 

  47. Li Y, Deng S, Xiao D (2011) A novel Hash algorithm construction based on chaotic neural network. Neural Comput Appl 20:133–141

    Article  Google Scholar 

  48. Xiang T, Liao X (2007) K.w. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl Math Comput 190:1637–1645

    MathSciNet  MATH  Google Scholar 

  49. Devaney RL (1989) An introduction to chaotic dynamical systems. Westview Press, Colorado

  50. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579

    MathSciNet  MATH  Google Scholar 

  51. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  52. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Article  Google Scholar 

  53. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  54. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22:1239–1255

    Article  Google Scholar 

  55. Mezura Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evolut Comput 9:1–17

    Article  MATH  Google Scholar 

  56. Becerra RL, Coello CAC (2006) Cultured differential evolution for constrained optimization. Comput Methods Appl Mech Eng 195:4303–4322

    Article  MathSciNet  MATH  Google Scholar 

  57. Tessema B, Yen GG (2006) A self adaptive penalty function based algorithm for constrained optimization. In: Evolutionary computation, 2006. CEC 2006. IEEE Congress on, IEEE, pp 246–253

  58. Hedar AR, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Global Optim 35:521–549

    Article  MathSciNet  MATH  Google Scholar 

  59. Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7:19–44

    Article  Google Scholar 

  60. Cabrera JCF, Coello CAC (2007) Handling constraints in particle swarm optimization using a small population size. In: Gelbukh A, Kuri Morales AF (eds) MICAI 2007: advances in artificial intelligence, Springer, pp 41–51

  61. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineering design problems. Eng Comput 27:155–182

    Article  MATH  Google Scholar 

  62. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26:30–45

    Google Scholar 

  63. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112:223–229

    Article  Google Scholar 

  64. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113–127

    Article  Google Scholar 

  65. Kannan B, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411

    Article  Google Scholar 

  66. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99

    Article  Google Scholar 

  67. Mezura E, Montes CAC (2008) Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

    Article  MathSciNet  MATH  Google Scholar 

  68. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  69. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  70. Kaveh A, Talatahari S (2009) Engineering optimization with hybrid particle swarm and ant colony optimization. Asian J Civ Eng 10:611–628

    Google Scholar 

  71. dos Santos Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37:1676–1683

    Article  Google Scholar 

  72. Hu X, Eberhart RC, Shi Y (2003) Engineering optimization with particle swarm. In: Swarm intelligence symposium, 2003. SIS’03. Proceedings of the 2003 IEEE, IEEE, pp 53–57

  73. Zhang C, Wang HP (1993) Mixed-discrete nonlinear optimization with simulated annealing. Eng Optim 21:277–291

    Article  Google Scholar 

  74. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933

    Article  MATH  Google Scholar 

  75. Mezura Montes E, Coello CAC, Velázquez Reyes J, Muñoz Dávila L (2007) Multiple trial vectors in differential evolution for engineering design. Eng Optim 39:567–589

    Article  MathSciNet  Google Scholar 

  76. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    MathSciNet  MATH  Google Scholar 

  77. Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Inform (Slov) 32:319–326

    MATH  Google Scholar 

  78. He S, Prempain E, Wu Q (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36:585–605

    Article  MathSciNet  Google Scholar 

  79. Akhtar S, Tai K, Ray T (2002) A socio-behavioural simulation model for engineering design optimization. Eng Optim 34:341–354

    Article  Google Scholar 

  80. Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 1–19. doi:10.1007/s00521-015-1870-7

  81. Gandomi AH, Yang XS, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336

    Article  Google Scholar 

  82. Dimopoulos GG (2007) Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput Methods Appl Mech Eng 196:803–817

    Article  MATH  Google Scholar 

  83. Rao SS, Rao S (2009) Engineering optimization: theory and practice. Wiley, New York

    Book  Google Scholar 

  84. Hwang SF, He RS (2006) A hybrid real-parameter genetic algorithm for function optimization. Adv Eng Inform 20:7–21

    Article  Google Scholar 

  85. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

    Article  Google Scholar 

  86. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. J Manuf Sci Eng 98:1021–1025

    Google Scholar 

  87. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  88. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evolut Comput 7:386–396

    Article  Google Scholar 

  89. Mehta VK, Dasgupta B (2012) A constrained optimization algorithm based on the simplex search method. Eng Optim 44:537–550

    Article  MathSciNet  Google Scholar 

  90. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197:3080–3091

    Article  MATH  Google Scholar 

  91. Arora J (2004) Introduction to optimum design. Academic Press, New York

    Google Scholar 

  92. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization, Part I: Theory. Int J Numer Methods Eng 21:1583–1599

    Article  MATH  Google Scholar 

  93. Omran MG, Salman A (2009) Constrained optimization using CODEQ. Chaos Solitons Fractals 42:662–668

    Article  MATH  Google Scholar 

  94. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748

    Article  Google Scholar 

  95. Tsai JF (2005) Global optimization of nonlinear fractional programming problems in engineering design. Eng Optim 37:399–409

    Article  MathSciNet  Google Scholar 

  96. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178:3043–3074

    Article  Google Scholar 

  97. Raj KH, Sharma R (2005) An evolutionary computational technique for constrained optimisation in engineering design. IE (I) J—MC 86:121–128

  98. Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill, New York

    MATH  Google Scholar 

  99. Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62:242–253

    Article  Google Scholar 

  100. Coello CAC (2000) Treating constraints as objectives for single-objective evolutionary optimization. Eng Optim+ A35(32):275–308

    Article  Google Scholar 

  101. Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20:171–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rezaee Jordehi.

Appendix

Appendix

List of 13 constrained benchmark problems:

Problem G 1

$$\mathop {\hbox{min} }\limits_{x} \, f(x) = 5\sum\nolimits_{i = 1}^{4} {x_{i} } - 5\sum\nolimits_{i = 1}^{4} {x_{i}^{2} } - \sum\nolimits_{i = 5}^{13} {x_{i} }$$
$$\begin{aligned} {\text{s}}. {\text{t}}. {\text{ g}}_{1} (x) &= 2x_{1} + 2x_{2} + x_{10} + x_{11} - 10 \le 0, \hfill \\ {\text{ g}}_{2} (x) &= 2x_{1} + 2x_{3} + x_{10} + x_{12} - 10 \le 0, \hfill \\ {\text{ g}}_{3} (x) &= 2x_{2} + 2x_{3} + x_{11} + x_{12} - 10 \le 0, \hfill \\ {\text{ g}}_{4} (x) &= - 8x_{1} + x_{10} \le 0, \hfill \\ {\text{ g}}_{5} (x) &= - 8x_{2} + x_{11} \le 0, \hfill \\ \, g_{6} (x) &= - 8x_{3} + x_{12} \le 0, \hfill \\ \, g_{7} (x) &= - 2x_{4} - x_{5} + x_{10} \le 0, \hfill \\ \, g_{8} (x) &= - 2x_{6} - x_{7} + x_{11} \le 0, \hfill \\ \, g_{9} (x) &= - 2x_{8} - x_{9} + x_{12} \le 0, \hfill \\ \, & \quad x_{i} \ge 0, \, i = 1, \ldots ,13, \hfill \\ & \quad x_{i} \le 1, \, i = 1, \ldots 9,13. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1),\, LB}} = (0, \ldots ,0), \hfill \\ {\text{Global minimum: \textit{x}}}^{best} {\text{ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), f(\textit {x}}}^{best} ) { = } - 15. \hfill \\ \end{aligned}$$

Problem G 2

$$\mathop {\hbox{max} }\limits_{x} \, f(x) = \left| {\frac{{\sum\nolimits_{i = 1}^{n} {\cos^{4} (x_{i} ) - 2\prod\nolimits_{i = 1}^{n} {\cos^{2} } (x_{i} )} }}{{\sqrt {\sum\nolimits_{i = 1}^{n} {ix_{i}^{2} } } }}} \right|$$
$$\begin{aligned} {\text{s}}. \quad {\text{t}}. { }g_{1} (x) = - \prod\nolimits_{i = 1}^{n} {x_{i} } + 0.75 \le 0, \hfill \\ \, g_{2} (x) = - \sum\nolimits_{i = 1}^{n} {x_{i} } - 7.5n \le 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound}}\,{\text{restrictions: UB = (10,}} \ldots , { 10)}\,{\text{ and}}\,{\text{ LB = (0,}} \ldots , { 0)}.\hfill \\ {\text{Best}}\,{\text{known}}\,{\text{value: f (}}x^{best} ) { = 0}. 8 0 3 6 1 9 , { }\quad {\text{for \textit{n} = 20}}.\hfill \\ \end{aligned}$$

Problem G 3

$$\begin{aligned} \mathop {\hbox{max} }\limits_{x} \, f(x) = (\sqrt n )^{n} \prod\nolimits_{i = 1}^{n} {x_{i} } \hfill \\ {\text{s}}. {\text{t}}. \quad { }h_{1} (x) = \sum\nolimits_{i = 1}^{n} {x_{i}^{2} } - 1 = 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} & {\text{Bound restrictions: UB = (1,}} \ldots , {\text{ 1) and LB = (0,}} \ldots , { 0)}.\hfill \\ & {\text{Global maximum: x}}^{best} = (\frac{1}{\sqrt n }, \ldots ,\frac{1}{\sqrt n }), \, f (x^{best} ) { = 1}.\hfill \\ \end{aligned}$$

Problem G 4

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) &= 5.3578547x_{3}^{2} + 0. 8 3 5 6 8 9 1x_{1} x_{5} + 3 7. 2 9 3 2 3 9 {\text{x}}_{1} - 4 0 7 9 2. 1 4 1\hfill \\ {\text{s}}. {\text{t}}. \quad g_{1} (x) &= u(x) - 92 \le 0, \hfill \\ \, g_{1} (x) &= - u(x) \le 0, \hfill \\ \, g_{3} (x) &= v(x) - 110 \le 0, \hfill \\ \, g_{4} (x) &= - v(x) + 90 \le 0, \hfill \\ \, g_{5} (x) &= w(x) - 25 \le 0, \hfill \\ \, g_{6} (x) &= - w(x) + 20 \le 0, \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{where }} \hfill \\ \, u(x) &= 85. 3 3 4 4 0 7 { + 0}. 0 0 5 6 8 5 8x_{2} x_{5} { + 0}. 0 0 0 6 2 6 2x_{1} x_{4} - 0. 0 0 2 2 0 5 3x_{3} x_{5} ,\hfill \\ \, v(x) &= 8 0. 5 1 2 4 9 { + 0}. 0 0 7 1 3 1 7x_{2} x_{5} { + 0}. 0 0 2 9 9 5 5x_{1} x_{2} + 0. 0 0 2 1 8 1 3x_{3}^{2} , \hfill \\ \, w(x) &= 9. 3 0 0 9 6 1 { + 0}. 0 0 4 7 0 2 6x_{3} x_{5} { + 0}. 0 0 1 2 5 4 7x_{1} x_{3} + 0. 0 0 1 9 0 8 5x_{3} x_{4}.\hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (102, 45, 45, 45, 45) and LB = (78, 33, 27, 27, 27)}}.\hfill \\ {\text{Global minimum: }}x^{best} = ( 7 8 , { 33, 29}. 9 9 5 2 5 6 0 2 5 6 8 2 , { 45, 36}. 7 7 5 8 1 2 9 0 5 7 8 8 ) , \, { }f(x^{best} ) = - 3 0 6 6 5. 5 3 9.\hfill \\ \end{aligned}$$

Problem G 5

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) &= 3x_{1} + 10^{ - 6} x_{1}^{3} + 2x_{2} + \frac{2}{3} \times 10^{ - 6} x_{2}^{3} \hfill \\ {\text{s}}. {\text{t}}. \quad { }g_{1} (x) &= x_{3} - x_{4} - 0.55 \le 0, \hfill \\ \, g_{2} (x) &= x_{4} - x_{3} - 0.55 \le 0, \hfill \\ \, h_{1} (x) &= 1000[\sin ( - x_{3} - 0.25) + \sin ( - x_{4} - 0.25)] + 8 9 4. 8- x_{1} = 0, \hfill \\ \, h_{2} (x) &= 1000[\sin (x_{3} - 0.25) + \sin (x_{3} - x_{4} - 0.25)] + 8 9 4. 8- x_{2} = 0, \hfill \\ \, h_{3} (x) &= 1000[\sin (x_{4} - 0.25) + \sin (x_{4} - x_{3} - 0.25)] + 1 2 9 4. 8 = 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (1200, 1200, 0}}. 5 5 , { 0}. 5 5 ) {\text{ and LB = (}}0, \, 0, - 0.55, - 0.55 ).\hfill \\ {\text{Best known solution: }}x^{best} = (679.9453, \, 1026, \, 0.118876, - 0.3962336 ), \, f(x^{best} ) = 5 1 2 6. 4 9 8 1. \hfill \\ \end{aligned}$$

Problem G 6

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) &= (x_{1} - 10)^{3} + (x_{2} - 20)^{3} \hfill \\ {\text{s}}. {\text{t}}. \quad { }g_{1} (x) &= (x_{1} - 5)^{2} + (x_{2} - 5)^{2} + 100 \le 0, \hfill \\ \, g_{2} (x) &= (x_{1} - 5)^{2} + (x_{2} - 5)^{2} - 8 2. 8 1\le 0, \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (100, 100) and LB = (13, 0)}}.\hfill \\ {\text{Global minimum: }}x^{best} &= ( 1 4. 0 9 5 , { 0}. 8 4 2 9 6 ), \, f(x^{best} ) &= - 6 9 6 1. 8 1 3 8 8.\hfill \\ \end{aligned}$$

Problem G 7

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) = x_{1}^{2} + x_{2}^{2} + x_{1} x_{2} - 14x_{1} - 16x_{2} + (x_{3} - 10)^{2} + 4(x_{4} - 5)^{2} + (x_{5} - 3)^{2} \hfill \\ \, + 2(x_{6} - 1)^{2} + 5x_{7}^{2} + 7(x_{8} - 11)^{2} + 2(x_{9} - 10)^{2} + (x_{10} - 7)^{2} + 45 \hfill \\ {\text{s}}. {\text{t}}. \quad { }g_{1} (x) = 4x_{1} + 5x_{2} - 3x_{7} + 9x_{8} - 105 \le 0, \hfill \\ \, \, \, g_{2} (x) = 10x_{1} - 8x_{2} - 17x_{7} + 2x_{8} \le 0, \hfill \\ \, g_{3} (x) = - 8x_{1} + 2x_{2} + 5x_{9} - 2x_{10} - 12 \le 0, \hfill \\ \, g_{4} (x) = 3(x_{1} - 2)^{2} + 4(x_{2} - 3)^{2} + 2x_{3}^{2} - 7x_{4} - 120 \le 0, \hfill \\ \, g_{5} (x) = 5x_{1}^{2} + 8x_{2} + (x_{3} - 6)^{2} - 2x_{4} - 40 \le 0, \hfill \\ \, g_{6} (x) = 0.5(x_{1} - 8)^{2} + 2(x_{2} - 4)^{2} + 3x_{5}^{2} - x_{6} - 30 \le 0, \hfill \\ \, g_{7} (x) = x_{1}^{2} + 2(x_{2} - 2)^{2} - 2x_{1} x_{2} + 14x_{5} - 6x_{6} \le 0, \hfill \\ \, g_{8} (x) = - 3x_{1} + 6x_{2} + 12(x_{9} - 8)^{2} - 7x_{10} \le 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} &{\text{Bound restrictions: UB = (10,}} \ldots , {\text{ 10) and LB = }}( - 10, \ldots , - 10). \hfill \\ &{\text{Global minimum: }}x^{best} = ( 2. 1 7 1 9 9 6 , { 2}. 3 6 3 6 8 3 , { 8}. 7 7 3 9 2 6 , { 5}. 0 9 5 9 8 4 , { 0}. 9 9 0 6 5 4 8, 1. 4 3 0 5 7 4 , { 1}. 3 2 1 6 4 4 , { 9}. 8 2 8 7 2 6 , { 8}. 2 8 0 0 9 2 , { 8}. 3 7 5 9 2 7), \, f(x^{best} ) = 2 4. 3 0 6 2 0 9 1.\hfill \\ \end{aligned}$$

Problem G 8

$$\begin{aligned} \mathop {\hbox{max} }\limits_{x} \, f(x) = \frac{{\sin^{3} (2\pi x_{1} )\sin (2\pi x_{2} )}}{{x_{1}^{3} (x_{1} + x_{2} )}} \hfill \\ {\text{s}}. {\text{t}}.\quad { }g_{1} (x) = x_{1}^{2} - x_{2} + 1 \le 0, \hfill \\ \, g_{2} (x) = 1 - x_{1} + (x_{2} - 4)^{2} \le 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (10, 10) and LB = (0, 0)}}.\hfill \\ {\text{Global maximum: }}x^{best} = ( 1. 2 2 7 9 7 1 3 , { 4}. 2 4 5 3 7 3 3), \, f(x^{best} ) = 0. 0 9 5 8 2 5.\hfill \\ \end{aligned}$$

Problem G 9

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) = (x_{1} - 10)^{2} + 5(x_{2} - 12)^{2} + x_{3}^{4} + 3(x_{4} - 11)^{2} + 10x_{5}^{6} + 7x_{6}^{2} + x_{7}^{4} - 4x_{6} x_{7} - 10x_{6} - 8x_{7} \hfill \\ {\text{s}}. {\text{t}}. \quad g_{1} (x) = 2x_{1}^{2} + 3x_{2}^{4} + x_{3} + 4x_{4}^{2} + 5x_{5} - 127 \le 0, \hfill \\ \, g_{2} (x) = 7x_{1} + 3x_{2} + 10x_{3}^{2} + x_{4} - x_{5} - 282 \le 0, \hfill \\ \, g_{3} (x) = 23x_{1} + x_{2}^{2} + 6x_{6}^{2} - 8x_{7} - 196 \le 0, \hfill \\ \, g_{4} (x) = 4x_{1}^{2} + x_{2}^{2} - 3x_{1} x_{2} + 2x_{3}^{2} + 5x_{6} - 11x_{7} \le 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (10,}} \ldots , {\text{ 10) and LB = }}( - 10, \ldots , - 10).\hfill \\ {\text{Global minimum: }}x^{best} = (2.330499, \, 1.951372, - 0.4775414, \, 4.365726, \hfill \\ - 0.6244870, \, 1.038131, \, 1.594227) , \, { }f(x^{best} ) = 6 8 0. 6 3 0 0 5 7 3. \hfill \\ \end{aligned}$$

Problem G 10

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) &= x_{1} + x_{2} + x_{3} \hfill \\ {\text{s}}. {\text{t}}. \quad g_{1} (x) &= - 1 + 0.0025(x_{4} + x_{6} ) \le 0, \hfill \\ \, g_{2} (x) &= - 1 + 0.0025( - x_{4} + x_{5} + x_{7} ) \le 0, \hfill \\ \, g_{3} (x) &= - 1 + 0.01( - x_{5} + x_{8} ) \le 0, \hfill \\ \, g_{4} (x) &= 100x_{1} - x_{1} x_{6} + 833.33252x_{4} - 83333.333 \le 0, \hfill \\ \, g_{5} (x) &= x_{2} x_{4} - x_{2} x_{7} - 1250x_{4} + 1250x_{5} \le 0, \hfill \\ \, g_{6} (x) &= x_{3} x_{5} - x_{3} x_{8} - 2500x_{5} + 1250000 \le 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000) and}} \hfill \\ {\text{LB = (100, 1000, 1000, 10, 10, 10, 10, 10)}}.\hfill \\ {\text{Global minimum: }}x^{best} = ( 5 7 9. 3 1 6 7 , { 1359}. 9 4 3 , { 5110}. 0 7 1 , { 182}. 0 1 7 4 , { 295}. 5 9 8 5 ,\hfill \\ 2 1 7. 9 7 9 9 , { 286}. 4 1 6 2 , { 395}. 5 9 7 9), \, f(x^{best} ) = 7 0 4 9. 3 3 0 7.\hfill \\ \end{aligned}$$

Problem G 11

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) = x_{1}^{2} + (x_{2} - 1)^{2} \hfill \\ {\text{s}}. {\text{t}}. \quad { }h_{1} (x) = x_{2} - x_{1}^{2} = 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (1, 1) and LB = }}( - 1, - 1).\hfill \\ {\text{Global minimum:}} \, x^{best} = ( \pm \frac{1}{\sqrt 2 },\frac{1}{2}), \, f(x^{best} ) = 0.75. \hfill \\ \end{aligned}$$

Problem G 12

$$\begin{aligned} &\mathop {\hbox{min} }\limits_{x} \, f(x) = 1 - 0.01\left[ {(x_{1} - 5)^{2} + (x_{2} - 5)^{2} + (x_{3} - 5)^{2} } \right] \hfill \\ &{\text{s}}. {\text{t}}. \quad g_{i,j,k} (x) = (x - i)^{2} + (x_{2} - j)^{2} + (x_{3} - k)^{2} - 0.0625 \le 0, \hfill \\ & \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad i, j, k = 1,2, \ldots ,9. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB = (10, 10, 10) and LB = (0, 0, 0)}}.\hfill \\ {\text{Global minimum: }}x^{best} = (5,{ 5, 5}), \, f(x^{best} ) = 1. \hfill \\ \end{aligned}$$

Problem G 13

$$\begin{aligned} \mathop {\hbox{min} }\limits_{x} \, f(x) &= e^{{x_{1} x_{2} x_{3} x_{4} x_{5} }} \hfill \\ {\text{s}}. {\text{t}}. \quad h_{1} (x) &= x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} - 10 = 0, \hfill \\ \, h_{2} (x) &= x_{2} x_{3} - 5x_{4} x_{5} = 0, \hfill \\ \, h_{3} (x) &= x_{1}^{3} + x_{2}^{3} + 1 = 0. \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{Bound restrictions: UB}} = (2. 3 , { 2}. 3 , { 3}. 2 , { 3}. 2 , { 3}. 2 ) {\text{ and LB = (}} - 2.3, - 2.3, - 3.2, - 3.2, - 3.2 ).\hfill \\ {\text{Global minimum: }}x^{best} = (- 1.717143, \, 1.595709, \, 1.827247, - 0.7636413, - 0.763645 ) , \, f(x^{best} ) = 0. 0 5 3 9 4 9 8. \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, A.A., Ali Abbaspour, R. & Rezaee Jordehi, A. An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput & Applic 28, 57–85 (2017). https://doi.org/10.1007/s00521-015-2037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2037-2

Keywords

Navigation