Skip to main content
Log in

Performance evaluation of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating evapotranspiration in arid regions of India

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper evaluates the ability of wavelet transform in improving the accuracy of artificial neural network (ANN) and adaptive neuro-fuzzy interface systems (ANFIS) models. In this study, the performance of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating daily evapotranspiration in arid regions was evaluated. Prior to the development of models, gamma test was used to identify the best input combinations that could be used under limited data scenario. Performance of the proposed hybrid models was compared to ANN, ANFIS, and conventionally used Hargreaves equation. The results revealed that use of wavelet transform as data preprocessing technique enhanced the efficiency of ANN and ANFIS models. Wavelet-ANN and Wavelet-ANFIS performed reasonably better than other models. Better handling of wavelet-decomposed input variables enabled Wavelet-ANN models to perform slightly better than the Wavelet-ANFIS models. W-ANN2 (RMSE = 0.632 mm/day and R = 0.96) was found to be the best model for estimating daily evapotranspiration in arid regions. The proposed W-ANN2 model used second-level db3 wavelet-decomposed subseries of temperature and previous day evapotranspiration values as inputs. The study concludes that hybrid Wavelet-ANN and Wavelet-ANFIS models can be effectively used for modeling evapotranspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. López-Urrea R, de Santa Martín, Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85:15–26. doi:10.1016/j.agwat.2006.03.014

    Article  Google Scholar 

  2. Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Food and Agricultural Organisation, Rome

    Google Scholar 

  3. Doorenbos J, Pruitt WO (1997) Crop water requirements. FAO irrigation and drainage. Paper No. 24 (rev.). FAO, Rome

    Google Scholar 

  4. Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12:13–49

    Google Scholar 

  5. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  6. Snyder RL (1992) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drain Eng 118:977–980

    Article  Google Scholar 

  7. Irmak S, Haman DZ, Jones JW (2002) Evaluation of class a pan coefficients for estimating reference evapotranspiration in humid location. J Irrig Drain Eng 128:153–159. doi:10.1061/(ASCE)0733-9437(2002)128:3(153)

    Article  Google Scholar 

  8. Martí P, Royuela A, Manzano J, Palau-Salvador G (2010) Generalization of ETo ANN models through data supplanting. J Irrig Drain Eng 136:161–174. doi:10.1061/(ASCE)IR.1943-4774.0000152

    Article  Google Scholar 

  9. Nandagiri L, Kovoor GM (2006) Performance evaluation of reference evapotranspiration equations across a range of Indian climates. J Irrig Drain Eng 132:238–249. doi:10.1061/(ASCE)0733-9437(2006)132:3(238)

    Article  Google Scholar 

  10. Rojas JP, Sheffield RE (2013) Evaluation of daily reference evapotranspiration methods as compared with the ASCE-EWRI Penman-Monteith equation using limited weather data in Northeast Louisiana. J Irrig Drain Eng 139:285–292. doi:10.1061/(ASCE)IR.1943-4774.0000523

    Article  Google Scholar 

  11. Sahoo B, Walling I, Deka BC, Bhatt BP (2012) Standardization of reference evapotranspiration models for a subhumid valley rangeland in the Eastern Himalayas. J Irrig Drain Eng 138:880–895. doi:10.1061/(ASCE)IR.1943-4774.0000476

    Article  Google Scholar 

  12. Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fakheri F, Marti P (2014) Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput Electron Agric 108:230–241. doi:10.1016/j.compag.2014.08.007

    Article  Google Scholar 

  13. Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23:3057–3067. doi:10.1007/s11269-009-9423-4

    Article  Google Scholar 

  14. Tabari H, Grismer ME, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117. doi:10.1007/s00271-011-0295-z

    Article  Google Scholar 

  15. Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. doi:10.1016/j.advwatres.2008.10.005

    Article  Google Scholar 

  16. Tabari H, Martinez C, Ezani A, Hosseinzadeh Talaee P (2013) Applicability of support vector machines and adaptive neuro-fuzzy inference system for modeling potato crop evapotranspiration. Irrig Sci 31:575–588. doi:10.1007/s00271-012-0332-6

    Article  Google Scholar 

  17. Tabari H, Hosseinzadeh Talaee P, Abghari H (2012) Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron. Meteorol Atmos Phys 116:147–154. doi:10.1007/s00703-012-0184-x

    Article  Google Scholar 

  18. Tabari H, Marofi S, Sabziparvar A-A (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406. doi:10.1007/s00271-009-0201-0

    Article  Google Scholar 

  19. Chauhan S, Shrivastava RK (2008) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manag 23:825–837. doi:10.1007/s11269-008-9301-5

    Article  Google Scholar 

  20. Kişi Ö (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27:417–430. doi:10.1007/s00271-009-0158-z

    Article  Google Scholar 

  21. Kumar M, Bandyopadhyay A, Raghuwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26:531–545. doi:10.1007/s00271-008-0114-3

    Article  Google Scholar 

  22. Kumar M, Raghuwanshi NS, Singh R (2010) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25. doi:10.1007/s00271-010-0230-8

    Article  Google Scholar 

  23. Landeras G, Ortiz-Barredo A, López JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manag 95:553–565. doi:10.1016/j.agwat.2007.12.011

    Article  Google Scholar 

  24. Rahimi Khoob A (2007) Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26:253–259. doi:10.1007/s00271-007-0090-z

    Article  Google Scholar 

  25. Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129:214–218. doi:10.1061/(ASCE)0733-9437(2003)129:3(214)

    Article  Google Scholar 

  26. Zanetti SS, Sousa EF, Oliveira VP, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133:83–89. doi:10.1061/(ASCE)0733-9437(2007)133:2(83)

    Article  Google Scholar 

  27. Rahimikhoob A (2010) Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theor Appl Climatol 101:83–91. doi:10.1007/s00704-009-0204-z

    Article  Google Scholar 

  28. Tabari H, Hosseinzadeh Talaee P (2012) Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput Appl 23:341–348. doi:10.1007/s00521-012-0904-7

    Article  Google Scholar 

  29. Shiri J, Nazemi AH, Sadraddini AA, Landeras G, Kisi O, Fard AF, Marti P (2013) Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J Hydrol 480:46–57. doi:10.1016/j.jhydrol.2012.12.006

    Article  Google Scholar 

  30. Karimaldini F, Shui L (2012) Daily evapotranspiration modeling from limited weather data by using neuro-fuzzy computing technique. J Irrig Drain Eng 138:21–34. doi:10.1061/(ASCE)IR.1943-4774.0000343

    Article  Google Scholar 

  31. Cobaner M (2011) Evapotranspiration estimation by two different neuro-fuzzy inference systems. J Hydrol 398:292–302. doi:10.1016/j.jhydrol.2010.12.030

    Article  Google Scholar 

  32. Tabari H, Kisi O, Ezani A, Hosseinzadeh Talaee P (2012) SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. J Hydrol 444–445:78–89. doi:10.1016/j.jhydrol.2012.04.007

    Article  Google Scholar 

  33. Deka PC, Prahlada R (2012) Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time. Ocean Eng 43:32–42. doi:10.1016/j.oceaneng.2012.01.017

    Article  Google Scholar 

  34. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36:961–1005

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu B, Shao D, Shen X (2007) Reference crop evaportranspiration forecasting model for BP neural networks based on wavelet transform. J Eng J Wuhan Univ 40:69–73

    Google Scholar 

  36. Izadifar Z (2010) Modeling and analysis of actual evapotranspiration using data driven and wavelet techniques. Thesis. Department of civil and geological engineering, University of Saskatchewan

  37. Falamarzi Y, Palizdan N, Huang YF, Lee TS (2014) Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agric Water Manag 140:26–36. doi:10.1016/j.agwat.2014.03.014

    Article  Google Scholar 

  38. Wang WG, Luo YF (2008) Wavelet network model for reference crop evapotranspiration forecasting. In: Proceedings of 2007 international conference on wavelet analysis pattern recognition, ICWAPR’07. pp 751–755

  39. Stefánsson A, Končar N, Jones AJ (1997) A note on the Gamma Test. Neural Comput Appl 5:131–133

    Article  Google Scholar 

  40. Tsui APM, Jones AJ, de Oliveira AG (2002) The construction of smooth models using irregular embeddings determined by a gamma test analysis. Neural Comput Appl 10:318–329. doi:10.1007/s005210200004

    Article  MATH  Google Scholar 

  41. Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276. doi:10.1016/j.eswa.2014.02.047

    Article  Google Scholar 

  42. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693. doi:10.1109/34.192463

    Article  MATH  Google Scholar 

  43. Jang J-SRJ (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. doi:10.1109/21.256541

    Article  Google Scholar 

  44. Tabari H, Hosseinzadeh Talaee P, Willems P, Martinez C (2014) Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations. Hydrol Sci J. doi:10.1080/02626667.2014.947293

    Google Scholar 

  45. Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol 100:231–241. doi:10.1016/S0168-1923(99)00090-8

    Article  Google Scholar 

  46. Boger Z, and Guterman H (1997) Knowledge extraction from artificial neural network model. In: IEEE systems, man, and cybernetics conference, Orlando, FL, USA

  47. Berry M, Linoff G (1997) Data mining techniques. Wiley, Hoboken

    Google Scholar 

  48. Blum A (1992) Neural networks in C++. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the India Meteorological Department for providing the required data for this research. Also, the authors wish to thank the reviewers for their comments, which have significantly improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Prakash Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.P., Deka, P.C. Performance evaluation of hybrid Wavelet-ANN and Wavelet-ANFIS models for estimating evapotranspiration in arid regions of India. Neural Comput & Applic 28, 275–285 (2017). https://doi.org/10.1007/s00521-015-2055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2055-0

Keywords

Navigation