Skip to main content
Log in

Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the global asymptotic stability of fractional-order BAM neural networks. We take both time delay and impulsive effects into consideration. Based on Lyapunov stability theorem, fractional Barbalat’s lemma and Razumikhin-type stability theorem, some stability conditions that are independent of the form of specific delays can be obtained. At last, two illustrative examples are given to show the independence of the obtained two main results and to show the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Laskin N (2000) Fractional market dynamics. Phys A 287:482–492

    Article  MathSciNet  Google Scholar 

  2. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  3. Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C 42:825–837

    Article  Google Scholar 

  4. Sabatier J, Agrawal OP, Machado JAT (2007) Advances in fractional calculus. Springer, Dordrecht

    Book  MATH  Google Scholar 

  5. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  6. Chen JJ, Zeng ZG, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  7. Chen LP, Chai Y, Wu RC, Ma TD, Zhai HZ (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111:190–194

    Article  Google Scholar 

  8. Stamova I (2014) Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77:1251–1260

    Article  MathSciNet  MATH  Google Scholar 

  9. Ke YQ, Miao CF (2015) Stability analysis of fractional-order Cohen–Grossberg neural networks with time delay. Int J Comput Math 92:1–12

    Article  MathSciNet  MATH  Google Scholar 

  10. Rakkiyappan R, Cao JD, Velmurugan G (2014) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26:84–97

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang XJ, Song QK, Liu YR, Zhao ZJ (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26

    Article  Google Scholar 

  12. Bao HB, Cao JD (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  MATH  Google Scholar 

  13. Tavan P, Grubmuller H, Kuhnel H (1990) Self-organization of associative memory and pattern classification: recurrent signal processing on topological feature maps. Biol Cybern 64:95–105

    Article  MATH  Google Scholar 

  14. Sharma N, Ray AK, Sharma S, Shukla KK, Pradhan S, Aggarwal LM (2008) Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network. J Med Phys 33:119–126

    Article  Google Scholar 

  15. Carpenter GA, Grossberg S (1991) Pattern recognition by self-organizing neural networks. MIT Press, Cambridge

    Google Scholar 

  16. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26:4947–4960

    Article  Google Scholar 

  17. Sakthivel R, Raja R, Anthoni SM (2011) Exponential stability for delayed stochastic bidirectional associative memory neural networks with Markovian jumping and impulses. J Optim Theory Appl 150:166–187

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng W, Yang SX, Wu H (2014) Improved robust stability criteria for bidirectional associative memory neural networks under parameter uncertainties. Neural Comput Appl 25:1205–1214

    Article  Google Scholar 

  19. Rakkiyappan R, Chandrasekar A, Lakshmanan S, Park JH (2014) Exponential stability for Markovian jumping stochastic BAM neural networks with mode-dependent probabilistic time-varying delays and impulse control. Complexity 20:39–65

    Article  MathSciNet  Google Scholar 

  20. Li L, Yang YQ, Lin G (2015) The stabilization of BAM neural networks with time-varying delays in the leakage terms via sampled-data control. Neural Comput Appl. doi:10.1007/s00521-015-1865-4

  21. Chen B, Yu L, Zhang WA (2011) Exponential convergence rate estimation for neutral BAM neural networks with mixed time-delays. Neural Comput Appl 20:451–460

    Article  Google Scholar 

  22. Lu DJ, Li CJ (2013) Exponential stability of stochastic high-order BAM neural networks with time delays and impulsive effects. Neural Comput Appl 23:1–8

    Article  Google Scholar 

  23. Ke YQ, Miao CF (2013) Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural Comput Appl 23:1089–1099

    Article  Google Scholar 

  24. Raja R, Raja UK, Samidurai R, Leelamani A (2014) Passivity analysis for uncertain discrete-time stochastic BAM neural networks with time-varying delays. Neural Comput Appl 25:751–766

    Article  MATH  Google Scholar 

  25. Cao JD, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172

    Article  MATH  Google Scholar 

  26. Gemant A (1936) A method of analyzing experimental results obtained from Elasto–Viscous bodies. J Appl Phys 7:311–317

    Google Scholar 

  27. Krepysheva N, Di PL, Neel MC (2006) Fractional diffusion and reflective boundary condition. Phys A 368:355–361

    Article  Google Scholar 

  28. Cao YP, Bai CZ (2014) Finite-time stability of fractional-order BAM neural networks with distributed delay. Abstr Appl Anal 2014:1–8

    MathSciNet  Google Scholar 

  29. Yang XJ, Song QK, Liu YR, Zhao ZJ (2014) Uniform stability analysis of fractional-order BAM neural networks with delays in the leakage terms. Abstr Appl Anal 2014:1–16

    MathSciNet  Google Scholar 

  30. Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput Math Appl 59:1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  31. Trigeassou JC, Maamri N, Sabatier J, Oustaloup A (2011) A Lyapunov approach to the stability of fractional differential equations. Sig Process 91:437–445

    Article  MATH  Google Scholar 

  32. Hu JB, Lu GP, Zhang SB, Zhao LD (2015) Lyapunov stability theorem about fractional system without and with delay. Commun Nonlinear Sci Numer Simul 20:905–913

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang F, Yang YQ, Hu MF (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244

    Article  Google Scholar 

  34. Sakthivel R, Raja R, Anthoni SM (2010) Asymptotic stability of delayed stochastic genetic regulatory networks with impulses. Phys Scr 82:055009

    Article  MATH  Google Scholar 

  35. Sakthivel R, Samidurai R, Anthoni SM (2010) New exponential stability criteria for stochastic BAM neural networks with impulses. Phys Scr 82:045802

    Article  MATH  Google Scholar 

  36. Sakthivel R, Samidurai R, Anthoni SM (2010) Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects. J Optim Theory Appl 147:583–596

    Article  MathSciNet  MATH  Google Scholar 

  37. Balasubramaniam P, Vembarasan V (2011) Asymptotic stability of BAM neural networks of neutral-type with impulsive effects and time delay in the leakage term. Int J Comput Math 88:3271–3291

    Article  MathSciNet  MATH  Google Scholar 

  38. Li CJ, Li CD, Liao XF, Huang TW (2011) Impulsive effects on stability of high-order BAM neural networks with time delays. Neurocomputing 74:1541–1550

    Article  Google Scholar 

  39. Chen BS, Chen JJ (2015) Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl Math Comput 254:63–69

    MathSciNet  Google Scholar 

  40. Deng WH, Li CP (2008) The evolution of chaotic dynamics for fractional unified system. Phys Lett A 372:401–407

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Yang.

Additional information

This work was jointly supported by the National Natural Science Foundation of China under Grant 11226116, the Fundamental Research Funds for the Central Universities JUSRP51317B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, Y., Xu, X. et al. Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput & Applic 28, 345–352 (2017). https://doi.org/10.1007/s00521-015-2063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2063-0

Keywords

Navigation