Skip to main content
Log in

A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Excessive synchronous firing of neurons is the sign of several neurological disorders such as Parkinson and epilepsy. In addition, growing evidence suggests that astrocytes have significant roles in neural synchronization. Drawing on these concepts and based on the latest studies, a bio-inspired stimulator which essentially is a dynamical model of the astrocyte biophysical model is proposed. The performance of the proposed bio-inspired stimulator is investigated on a large-scale, sparsely connected neural network which models a local cortical population. Next, a multiplier-less digital circuit for the bio-inspired stimulator is designed, and finally, the complete digital circuit of the closed-loop system is implemented in hardware on the ZedBoard development kit. Considering software simulations and hardware FPGA implementation, the proposed bio-inspired stimulator is able to prevent the hyper-synchronous neural firing in a network of excitatory and inhibitory neurons. Based on the obtained results, it is demonstrated that the proposed stimulator has a demand-controlled characteristic and can be a good candidate as a new deep brain stimulation (DBS) technique to effectively suppress the hyper-synchronous neural oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65

    Article  MathSciNet  Google Scholar 

  2. Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797

    Article  Google Scholar 

  3. Blenkinsop A (2013). Computational modelling of normal function and pathology in neural systems: new tools, techniques and results in cortex and basal ganglia. Doctoral dissertation, University of Sheffield

  4. Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139

    Article  Google Scholar 

  5. WHO. Epilepsy (updated October 2012; cited 2009 December 8). http://www.who.int/mediacentre/factsheets/fs999/en/

  6. Engel J Jr (2013) Why is there still doubt to cut it out? Epilepsy Curr 13:198–204

    Article  Google Scholar 

  7. Engel J, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930

    Article  Google Scholar 

  8. Beleza P (2009) Refractory epilepsy: a clinically oriented review. Eur Neurol 62:65–71

    Article  Google Scholar 

  9. Laxpati NG, Kasoff WS, Gross RE (2014) Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11(3):508–526

    Article  Google Scholar 

  10. Sironi VA (2011) Origin and evolution of deep brain stimulation. Frontiers Integr Neurosci 5:42. doi:10.3389/fnint.2011.00042

    Article  Google Scholar 

  11. Tukhlina N, Rosenblum M (2008) Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J Biol Phys 34(3–4):301–314

    Article  Google Scholar 

  12. Omel‘chenko OE, Hauptmann C, Maistrenko YL, Tass PA (2008) Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation. Phys D Nonlinear Phenom 237(3):365–384

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384

    Article  Google Scholar 

  14. Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86

    Article  Google Scholar 

  15. Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166

    Article  MathSciNet  MATH  Google Scholar 

  16. Ranjbar M, Amiri M (2015) An analog astrocyte–neuron interaction circuit for neuromorphic applications. J Comput Electron 14(3):694–706

    Article  Google Scholar 

  17. Ranjbar M, Amiri M (2015) Analog implementation of neuron–astrocyte interaction in tripartite synapse. J Comput Electron. doi:10.1007/s10825-015-0727-8

  18. Nazari S, Faez K, Karami E, Amiri M (2014) A digital neuromorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26

    Article  Google Scholar 

  19. Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14(1):227–239

    Article  Google Scholar 

  20. Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90

    Article  Google Scholar 

  21. Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292

    Article  Google Scholar 

  22. Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), IEEE, pp 80–85

  23. Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000239

    Article  MathSciNet  Google Scholar 

  24. Bertram EH (2013) Neuronal circuits in epilepsy: Do they matter? Exp Neurol 244:67–74

    Article  Google Scholar 

  25. Stefanescu RA, Shivakeshavan RG, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759

    Article  Google Scholar 

  26. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70

    Article  Google Scholar 

  27. Frohlich F, Timofeev I, Sejnowski TJ, Bazhenov M (2008) Extracellular potassium dynamics and epileptogenesis. In: Soltesz I, Staley K (eds) Computational Neuroscience in Epilepsy, pp 407–427

  28. Kudela P, Franaszczuk PJ, Bergey GK (2003) Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol Cybern 88(4):276–285

    Article  MATH  Google Scholar 

  29. Winestone JS, Zaidel A, Bergman H, Israel Z (2012) The use of macroelectrodes in recording cellular spiking activity. J Neurosci Methods 206:34–39

    Article  Google Scholar 

  30. Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Exp Neurol 219:58–61

    Article  Google Scholar 

  31. Sancristóbal B, Vicente R, Garcia-Ojalvo J (2014) Role of frequency mismatch in neuronal communication through coherence. J Comput Neurosci 37(2):193–208

    Article  Google Scholar 

  32. Barardi A, Malagarriga D, Sancristobal B, Garcia-Ojalvo J, Pons AJ (2014) Probing scale interaction in brain dynamics through synchronization. Philos Trans R Soc B Biol Sci 369(1653):20130533

    Article  Google Scholar 

  33. Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers Neural Circuits 8:12

    Article  Google Scholar 

  34. Linne ML, Jalonen TO (2014) Astrocyte-neuron interactions: from experimental research-based models to translational medicine. Prog Mol Biol Transl Sci 123:191

    Article  Google Scholar 

  35. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321

    Article  Google Scholar 

  36. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705

    Article  Google Scholar 

  37. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc B Biol Sci 369(1654):20130595

    Article  Google Scholar 

  38. Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236

    Article  Google Scholar 

  39. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  Google Scholar 

  40. Seifert G, Steinhäuser C (2013) Neuron–astrocyte signaling and epilepsy. Exp Neurol 244:4–10

    Article  Google Scholar 

  41. Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299

    Article  MathSciNet  Google Scholar 

  42. Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180

    Article  MATH  Google Scholar 

  43. Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445. doi:10.1007/s10867-009-9156-x

    Article  Google Scholar 

  44. Montaseri G, Yazdanpanah MJ (2014) Desynchronization of two coupled limit-cycle oscillators using an astrocyte-inspired controller. Int J Biomath 7(01):1450001, 1–23

    Article  MathSciNet  MATH  Google Scholar 

  45. Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):319–334

    Article  MathSciNet  MATH  Google Scholar 

  46. Khalil HK, Grizzle JW (2002) Nonlinear systems, vol 3. Prentice hall, Upper Saddle River

    Google Scholar 

  47. Majumder T, Pande PP, Kalyanaraman A (2014) Hardware accelerators in computational biology: application, potential and challenges. Design & Test, IEEE 31(1):8–18

  48. Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83

    Article  Google Scholar 

  49. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36(3):174–184

    Article  Google Scholar 

  50. Montaseri G, Yazdanpanah MJ, Bahrami F (2015) Designing a deep brain stimulator to suppress pathological neuronal synchrony. Neural Netw 63:282–292

    Article  MATH  Google Scholar 

  51. Beuter A, Lefaucheur JP, Modolo J (2014) Closed-loop cortical neuromodulation in Parkinson’s disease: An alternative to deep brain stimulation? Clin Neurophysiol 125(5):874–885

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Amiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, S., Faez, K. & Amiri, M. A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural network. Neural Comput & Applic 28, 375–390 (2017). https://doi.org/10.1007/s00521-015-2071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2071-0

Keywords

Navigation