Skip to main content
Log in

Extension of Laplace transform–homotopy perturbation method to solve nonlinear differential equations with variable coefficients defined with Robin boundary conditions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article proposes the application of Laplace transform–homotopy perturbation method with variable coefficients, in order to find analytical approximate solutions for nonlinear differential equations with variable coefficients. As case study, we present the oxygen diffusion problem in a spherical cell including nonlinear Michaelis–Menten uptake kinetics. It is noteworthy that this important problem introduces the Robin boundary conditions as an additional difficulty. In fact, after comparing figures between approximate and exact solutions, we will see that the proposed solutions are highly accurate. What is more, we will see that the square residual error of our solutions is 1.808511632 × 10−7 and 2.560574954 × 10−10 which confirms the accuracy of the proposed method, taking into account that we will just keep the first-order approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(x\) :

Radial distance

\(y\) :

Oxygen concentration

\(\alpha\) :

Maximum reaction rate

\(K\) :

Michaelis constant

\(H\) :

Permeability of the cell membrane

References

  1. Spiegel MR (1998) Teoría y Problemas de Transformadas de Laplace, primera edición. Serie de compendios Schaum, McGraw-Hill, México

  2. Aminikhan H, Hemmatnezhad M (2012) A novel effective approach for solving nonlinear heat transfer equations. Heat Transf Asian Res 41(6):459–466

    Article  Google Scholar 

  3. Aminikhah Hossein (2012) The combined Laplace transform and new homotopy perturbation method for stiff systems of ODEs. Appl Math Model 36:3638–3644

    Article  MathSciNet  MATH  Google Scholar 

  4. Filobello-Nino U, Vazquez-Leal H, Khan Y, Perez-Sesma A, Diaz-Sanchez A, Jimenez-Fernandez VM, Herrera-May A, Pereyra-Diaz D, Mendez-Perez JM, Sanchez-Orea J (2013) Laplace transform–homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals. Comput Appl Math. ISSN:0101-8205. doi:10.1007/s40314-013-0073-z

  5. Filobello-Nino U, Vazquez-Leal H, Cervantes-Perez J, Benhammouda B, Perez-Sesma A, Hernandez-Martinez L, Jimenez-Fernandez VM, Herrera-May AL, Pereyra-Diaz D, Marin-Hernandez A, Huerta Chua J (2014). A handy approximate solution for a squeezing flow between two infinite plates by using of Laplace transform–homotopy perturbation method. SpringerPlus, 3:421, 10 pp. doi:10.1186/2193-1801-3-421

  6. Filobello-Nino U, Vazquez-Leal H, Benhammouda B, Hernandez-Martinez L, Hoyos-Reyes C, Perez-Sesma JAA, Manuel Jimenez-Fernandez V, Pereyra-Diaz D, Marin-Hernandez A, Diaz-Sanchez A, Huerta-Chua J, Cervantes-Perez J (2014) Nonlinearities distribution Laplace transform–homotopy perturbation method. SpringerPlus 3:594. doi:10.1186/2193-1801-3-594

  7. Rach R, Wazwaz A-M, Duan J-S (2014) A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. Int J Biomath 7(2):1450020. doi:10.1142/S179352451450020X

  8. Vazquez-Leal H, Sandoval-Hernandez M, Castaneda-Sheissa R, Filobello-Nino U, Sarmiento-Reyes A (2015) Modified Taylor solution of equation of oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics. J Appl Math Res 4(2):253–258. doi:10.14419/ijamr.v4i2.4273

    Article  Google Scholar 

  9. Lin SH (1976) Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J Theor Biol 60:449–457

    Article  Google Scholar 

  10. Assas LMB (2007) Approximate solutions for the generalized K-dV- Burgers’ equation by He’s variational iteration method. Phys Scr 76:161–164. doi:10.1088/0031-8949/76/2/008

    Article  MATH  Google Scholar 

  11. He JH (2007) Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34:1430–1439. doi:10.1016/j.chaos.2006.10.026

    Article  MathSciNet  MATH  Google Scholar 

  12. Kazemnia M, Zahedi SA, Vaezi M, Tolou N (2008) Assessment of modified variational iteration method in BVPs high-order differential equations. J Appl Sci 8:4192–4197. doi:10.3923/jas.2008.4192.4197

    Article  Google Scholar 

  13. Noorzad R, Tahmasebi Poor A, Omidvar M (2008) Variational iteration method and homotopy-perturbation method for solving Burgers equation in fluid dynamics. J Appl Sci 8:369–373. doi:10.3923/jas.2008.369.373

    Article  Google Scholar 

  14. Evans DJ, Raslan KR (2005) The Tanh function method for solving some important nonlinear partial differential. Int J Comput Math 82:897–905. doi:10.1080/00207160412331336026

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu F (2007) A generalized soliton solution of the Konopelchenko–Dubrovsky equation using exp-function method. Zeitschrift Naturforschung Sect A J Phys Sci 62(12):685–688

    MATH  Google Scholar 

  16. Mahmoudi J, Tolou N, Khatami I, Barari A, Ganji DD (2008) Explicit solution of nonlinear ZK–BBM wave equation using Exp-function method. J Appl Sci 8:358–363. doi:10.3923/jas.2008.358.363

    Article  Google Scholar 

  17. Adomian G (1988) A review of decomposition method in applied mathematics. Math Anal Appl 135:501–544

    Article  MathSciNet  MATH  Google Scholar 

  18. Babolian E, Biazar J (2002) On the order of convergence of Adomian method. Appl Math Comput 130(2):383–387. doi:10.1016/S0096-3003(01)00103-5

    MathSciNet  MATH  Google Scholar 

  19. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech English Edn 33(1):25–36. doi:10.1007/s10483-012-1531-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Sheikholeslami M, Ganji DD, Ashorynejad HR (2013) Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol 239:259–265

    Article  Google Scholar 

  21. Zhang L-N, Xu L (2007) Determination of the limit cycle by He’s parameter expansion for oscillators in a potential. Zeitschriftfür Naturforschung Sect A J Phys Sci 62(7–8):396–398

  22. Aminikhah H (2011) Analytical approximation to the solution of nonlinear Blasius viscous flow equation by LTNHPM. International Scholarly Research Network ISRN Mathematical Analysis, Volume 2012, Article ID 957473, 10 pp. doi:10.5402/2012/957473

  23. He JH (1998) A coupling method of a homotopy technique and a perturbation technique for nonlinear problems. Int J Non-Linear Mech 351:37–43. doi:10.1016/S0020-7462(98)00085-7

    MathSciNet  MATH  Google Scholar 

  24. He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262. doi:10.1016/S0045-7825(99)00018-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Marinca V, Herisanu N (2011) Nonlinear dynamical systems in engineering, 1st edn. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Khan M, Gondal MA, Hussain I, Karimi Vanani S (2011) A new study between homotopy analysis method and homotopy perturbation transform method on a semi infinite domain. Math Comput Model 55:1143–1150

    Article  MathSciNet  MATH  Google Scholar 

  27. He JH (2006) Homotopy perturbation method for solving boundary value problems. Phys Lett A 350(1–2):87–88

    Article  MathSciNet  MATH  Google Scholar 

  28. Vazquez-Leal H, Hernandez-Martinez L, Khan Y, Jimenez-Fernandez VM, Filobello-Nino U, Diaz-Sanchez A, Herrera-May AL, Castaneda-Sheissa R, Marin-Hernandez A, Rabago-Bernal F, Huerta-Chua J (2014) Multistage HPM applied to path tracking damped oscillations of a model for HIV infection of CD4 + T cells. Br J Math Computer Sci 4(8):1035–1047

    Article  Google Scholar 

  29. Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Filobello-Nino U, Diaz-Sanchez A (2012) Rational biparameter homotopy perturbation method and laplace-padé coupled version. J Appl Math Article ID 923975, 21 pp. doi:10.1155/2012/923975

  30. Ganji DD, Mirgolbabaei H, Me M, Mo M (2008) Application of homotopy perturbation method to solve linear and non-linear systems of ordinary differential equations and differential equation of order three. J Appl Sci 8:1256–1261. doi:10.3923/jas.2008.1256.1261

    Article  Google Scholar 

  31. Biazar J, Eslami M (2012) A new homotopy perturbation method for solving systems of partial differential equations. Comput Math Appl 62:225–234

  32. Vazquez-Leal H, Filobello-Niño U, Castañeda-Sheissa R, HernandezMartinez L, Sarmiento-Reyes A (2012) Modified HPMs inspired by homotopy continuation methods. Math Problems Eng Article ID 309123:20. doi:10.155/2012/309123

  33. Vazquez-Leal H, Castañeda-Sheissa R, Filobello-Niño U, Sarmiento-Reyes A, Sánchez-Orea J (2012) High accurate simple approximation of normal distribution related integrals. Math Problem Eng 2012:Article ID 124029, 22 pp. doi:10.1155/2012/124029

  34. Filobello-Niño U, Vazquez-Leal H, Castañeda-Sheissa R, Yildirim A, Hernandez ML, Pereyra Díaz D, Pérez Sesma A, Hoyos Reyes C (2012) An approximate solution of Blasius equation by using HPM method. Asian J Math Stat 10. doi:10.3923/ajms.2012

  35. Biazar J, Ghazvini H (2009) Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal Real World Appl 10(5):2633–2640

  36. Sheikholeslami M, Ganji DD, Rokni HB (2013) Nanofluid flow in a semi-porous channel in the presence of uniform magnetic field. IJE Trans C Aspects 26(6):653–662

  37. Sheikholeslami M, Ashorynejad HR, Ganji, DD, Kolahdooz A (2011) Investigation of rotating MHD viscous flow and heat transfer between stretching and porous surfaces using analytical method. Hindawi Publishing Corporation Mathematical Problems in Engineering, vol 2011. Article ID 258734, 17. doi:10.1155/2011/258734

  38. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

  39. Sheikholeslami M, Ashorynejad HR, Ganji D, Yıldırım A (2012) Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica 19(3):437–442

    Article  Google Scholar 

  40. Filobello-Nino U, Vazquez-Leal H, Benhammouda B, Shukla AK, Cervantes-Perez J, Perez-Sesma A et al. The study of heat transfer phenomena by using of Laplace transform–homotopy perturbation method. Appl Math Inf Sci (Article currently under review)

  41. Filobello-Nino U, Vazquez-Leal H, Benhammouda B, Perez-Sesma A, Jimenez-Fernandez VM, Cervantes-Perez J et al. An easy computable approximate solution for Troesch’s problem by using of Laplace transform–homotopy perturbation method. Appl Math Inf Sci (Article currently under review)

  42. Rashidi MM, Rastegari MT, Asadi M, Bg OA (2012) A study of non-newtonian flow and heat transfer over a non-isothermal wedge using the homotopy analysis method. Chem Eng Commun 199:231–256

  43. Rashidi M, Pour SM, Hayat T, Obaidat S (2012) Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput Fluids 54:1–9

    Article  MathSciNet  MATH  Google Scholar 

  44. Rashidi MM, Domairry G, Dinarvand S (2009) The homotopy analysis method for explicit analytical solutions of Jaulent–Miodek equations. Numer Methods Partial Differ Equ 25(2):430–439. doi:10.1002/num.20358

    Article  MathSciNet  MATH  Google Scholar 

  45. Anwar Bég O, Rashidi MM, Bég TA, Asadi M (2012) Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in porous medium: a model for magneto-bio-rheological lubrication. J Mech Med Biol 12(1):1–21. doi:10.1142/S0219519412004648

  46. Sheikholeslami M, Ashorynejad HR, Domairry HR, Hashim I (2012) Flow and heat transfer of Cu–Water Nanofluid between a stretching sheet and a porous surface in a rotating system. Hindawi Publishing Corporation. J Appl Math Article ID 421320:18. doi:10.1155/2012/421320

  47. Sheikholeslami M, Ellahi R, Ashorynejad HR, Domairry G, Hayat T (2014) Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci 11(2):486–496

  48. Ince E (1956) Ordinary differential equations. Dover, New York

    MATH  Google Scholar 

  49. Forsyth A (1906) Theory of differential equations. Cambridge University Press, New York

    MATH  Google Scholar 

  50. Filobello-Nino U, Vazquez-Leal H, Benhammouda H, Perez-Sesma A, Jimenez-Fernandez VM et al (2015) Analytical solutions for systems of singular partial differential-algebraic equations. Hindawi Publishing Corporation Discrete Dynamics in Nature and Society, vol 2015, Article ID 752523, 9 pp. doi:10.1155/2015/752523

  51. Sheikholeslami M, BaniSheykholeslami F, Khoshhal S, Mola-Abasia H, Ganji DD, Rokni HB (2014) Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Comput Appl 25:171–178. doi 10.1007/s00521-013-1459-y

  52. Rashidi MM, Gangi D (2009) New analytical solution of the three dimensional Navier–Stokes equations. Modern Phys Lett B World Sci 23(26). ISSN:1793-6640

  53. Rashidi MM, Erfani E The modified differential transform method for investigating nano boundary-layers over stretching surfaces. Int J Numer Methods Heat Fluid Flow 21(7). ISSN:0961-5539

  54. Filobello-Nino U, Vazquez-Leal H, Sarmiento-Reyes A, Perez-Sesma A, Hernandez-Martinez L, Herrera-May A, Jimenez-Fernandez VM, Marin-Hernandez A, Pereyra-Diaz D, Diaz-Sanchez A (2013) The study of heat transfer phenomena using PM for approximate solution with Dirichlet and mixed boundary conditions. Appl Comput Math 2(6):143–148. doi:10.11648/j.acm.20130206.16

    Google Scholar 

  55. Filobello-Nino U, Vazquez-Leal H, Khan Y, Yildirim A, Jimenez-Fernandez VM, Herrera-May AL, Castaneda-Sheissa R, Cervantes-Perez J (2013) Perturbation method and Laplace–Padé approximation to solve nonlinear problems. Miskolc Math Notes 14(1):89–101

  56. Simmons GF (1993) Ecuaciones Diferenciales: Con Aplicaciones Y Notas Históricas, 2da Edición. McGraw-Hill, España

    Google Scholar 

  57. McElwain DLS (1978) A re-examination of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J Theor Biol 71:255–263

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Council for Science and Technology of Mexico (CONACyT) through Grant CB-2010-01 #157024. The authors would like to thank Rogelio Alejandro Callejas-Molina and Roberto Ruiz-Gomez for their contribution to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vazquez-Leal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Appendix

Appendix

Laplace transform of \(F(t)\) is denoted by \(\Im \left\{ {F(t)} \right\}\) and is defined by the integral [1]

$$\Im \left\{ {F(t)} \right\} = f(s) = \int\limits_{0}^{\infty } {e^{ - st} } F(t){\text{d}}t.$$
(45)

Linearity of L.T. is an important property, which is expressed as

$$\Im \left\{ {c_{1} F_{1} (t) + c_{2} F_{2} (T)} \right\} = c_{1} f_{1} (s) + c_{2} f_{2} (s),$$
(46)

where \(c_{1}\) and \(c_{2}\) are constants, and we have denoted: \(\Im \left\{ {F_{1} (t)} \right\} = f_{1} (s)\), \(\Im \left\{ {F_{2} (t)} \right\} = f_{2} (s)\).

Some known properties of L.T. widely employed in this study are

$$1. \quad \Im \left\{ 1 \right\} = \frac{1}{s}\,(s > 0)$$
(47)
$$2. \quad \Im \left\{ {t^{n} } \right\} = \frac{n!}{{s^{n + 1} }}\,(s > 0)$$
(48)
$$\begin{aligned}3. \quad \Im \left\{ {F^{(n)} (t)} \right\} &= s^{n} f(s) - s^{n - 1} F(0) - s^{n - 2} F^{\prime}(0) - \cdots\\ & \quad- F^{(n - 1)} (0), \end{aligned}$$
(49)

where \(F^{(n)} (t)\) denotes the nth derivative of \(F(t)\) and \(\Im \left\{ {F(t)} \right\} = f(s).\)

$$\begin{aligned} 4. \quad \Im \left\{ {t^{n} F(t)} \right\} &= ( - 1)^{n} \frac{{{\text{d}}^{n} f(s)}}{{{\text{d}}t^{n} }},\\ &\quad\;n\;{\text{denotes}}\;{\text{a}}\;{\text{positive}}\;{\text{integer}}.\end{aligned}$$
(50)

If L.T. of \(F(t)\) is \(f(s)\), then \(F(t)\) is called the inverse L.T. of \(f(s)\) and is expressed by \(F(t) = \Im^{ - 1} \left\{ {f(s)} \right\}\), where \(\Im^{ - 1}\) is called the inverse L.T. operator.

From Eqs. (47) and (48), it is clear that

$$1 = \Im^{ - 1} \left( {\frac{1}{s}} \right),$$
(51)
$$t^{n} = \Im^{ - 1} \left( {\frac{n!}{{s^{n + 1} }}} \right),$$
(52)

and so on.

The following important result is obtained from (46) and denotes the linearity property of \(\Im^{ - 1}\)

$$\Im^{ - 1} \left\{ {c_{1} f_{1} (s) + c_{2} f_{2} (s)} \right\} = c_{1} F_{1} (t) + c_{2} F_{2} (T).$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filobello-Nino, U., Vazquez-Leal, H., Khan, Y. et al. Extension of Laplace transform–homotopy perturbation method to solve nonlinear differential equations with variable coefficients defined with Robin boundary conditions. Neural Comput & Applic 28, 585–595 (2017). https://doi.org/10.1007/s00521-015-2080-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2080-z

Keywords

Navigation