Skip to main content
Log in

A two-step artificial bee colony algorithm for clustering

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In the field of data analysis, clustering is a powerful technique which groups the data into different subsets using a distance function. Data belonging to the same subset are similar in nature and offer heterogeneity to the data that reside in other subsets. Clustering has proved its potentiality in various fields such as bioinformatics, pattern recognition, image processing and many more. In this paper, a two-step artificial bee colony (ABC) algorithm is proposed for efficient data clustering. In two-step ABC algorithm, the initial positions of food sources are identified using the K-means algorithm instead of random initialization. Along this, to discover the promising search areas, an improved solution search equation based on social behavior of PSO is applied in the onlooker bee phase of ABC algorithm and abandoned food source location is found by using Hooke and Jeeves-based direct search method. Five benchmark and two artificial datasets are applied to validate the proposed modifications in the ABC algorithm, and results of this study are compared with other well-known clustering algorithms. Both the experimental and statistical analyses show that improvements in ABC algorithm have an advantage over the conventional ABC algorithm for solving clustering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bakhtiyari K, Husain H (2014) Fuzzy model of dominance emotions in affective computing. Neural Comput Appl 25:1467–1477

    Article  Google Scholar 

  2. Jordehi AR, Jasni J (2011) A comprehensive review on methods for solving FACTS optimization problem in power systems. Int Rev Electr Eng 6:1916–1926

    Google Scholar 

  3. Jordehi AR, Jasni J (2012) Approaches for FACTS optimization problem in power systems. In: IEEE international conference on power engineering and optimization (PEDCO), pp 355–360

  4. Taghavi M, Bakhtiyari K, Scavino E (2013) Agent-based computational investing recommender system. In: Proceedings of the 7th ACM conference on recommender systems, pp 455–458

  5. Jordehi AR, Joorabian M (2011) Optimal placement of multi-type FACTS devices in power systems using evolution strategies. In: 5th international conference on power engineering and optimization (PEOCO), pp 352–357

  6. Jordehi AR, Jasni J, Wahab N, Kadir MZ (2013) Particle swarm optimization applications in FACTS optimization problem. In: IEEE 7th international conference on power engineering and optimization (PEOCO), pp 193–198

  7. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on systems, man, and cybernetics, computational cybernetics and simulation, vol 5, pp 4104–4108

  8. Jordehi AR (2014) Particle swarm optimization for dynamic optimization problems: a review. Neural Comput Appl 25:1507–1516

    Article  Google Scholar 

  9. Jordehi AR, Jasni J, Wahab N, Kadir MZ, Javadi MS (2015) Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int J Electr Power Energy Syst 64:771–784. doi:10.1016/j.ijepes.2014.07.058

    Article  Google Scholar 

  10. Jordehi AR, Jasni J, Wahab N, Kadir MZ, Javadi MS (2015) Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int J Electr Power Energy Syst 64:771–784. doi:10.1016/j.ijepes.2014.07.058

    Article  Google Scholar 

  11. Jordehi AR (2015) Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimization problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  12. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Michigan

    MATH  Google Scholar 

  13. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  14. Jordehi AR (2014) Optimal setting of TCSC’s in power systems using teaching–learning-based optimization algorithm. Neural Comput Appl. doi:10.1007/s00521-014-1791-x

    Google Scholar 

  15. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, Kayseri, Turkey, Technical Report-TR06

  16. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  17. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  18. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

  19. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

    Article  Google Scholar 

  20. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373

    Article  Google Scholar 

  21. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  22. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system search algorithm. Struct Multidiscip Optim 41(6):893–911

    Article  Google Scholar 

  23. Dai C, Chen W, Zhu Y, Zhang X (2009) Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans Power Syst 24(3):1218–1231

    Google Scholar 

  24. Jordehi AR (2015) Seeker optimization (human group optimization) algorithm with chaos. J Exp Theor Artif Intell 27(6):753–762

    Article  Google Scholar 

  25. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  26. Jordehi AR (2014) A chaotic-based big bang–big crunch algorithm for solving global optimization problems. Neural Comput Appl 25:1329–1335

    Article  Google Scholar 

  27. Shi Y (2011) Brain storm optimization algorithm. In: Advances in swarm intelligence. Springer, Berlin, pp 303–309

  28. Jordehi AR (2015) Brainstorm optimization algorithm (BSOA): an efficient algorithm for finding optimal location and setting of FACTS devices in electric power systems. Int J Electr Power Energy Syst 69:48–57

    Article  Google Scholar 

  29. Yang XS (2010) A new meta-heuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO), pp 65–74

  30. Jordehi AR (2015) Chaotic bat swarm optimization (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  31. Jordehi R (2011) Heuristic methods for solution of FACTS optimization problem in power systems. In: IEEE student conference on research and development, pp 30–35

  32. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–322

    Article  Google Scholar 

  33. Lingras P, Huang X (2005) Statistical, evolutionary, and neurocomputing clustering techniques: cluster-based vs object-based approaches. Artif Intell Rev 23(1):3–29

    Article  Google Scholar 

  34. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  35. Scheunders P (1997) A genetic c-means clustering algorithm applied to color image quantization. Pattern Recognit 30(6):859–866

    Article  Google Scholar 

  36. Gomez-Muñoz VM, Porta-Gándara MA (2002) Local wind patterns for modeling renewable energy systems by means of cluster analysis techniques. Renew Energy 2:171–182

    Article  Google Scholar 

  37. Mitra S, Banka H (2006) Multi-objective evolutionary bi clustering of gene expression data. Pattern Recognit 39:2464–2477

    Article  MATH  Google Scholar 

  38. Chang DX, Zhang XD, Zheng CW (2009) A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognit 42:1210–1222

    Article  Google Scholar 

  39. Ester M, Kriegel HP, Sander J (1996) A density-based algorithm for discovering clusters in large spatial data bases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231

  40. Madeira SC, Oliveira AL (2004) Bi clustering algorithms for biological data analysis: a survey. IEEE Trans Comput Bioinform 1(1):24–45

    Article  Google Scholar 

  41. Dehuri S, Ghosh A, Mall R (2006) Genetic algorithms for multi-criterion classification and clustering in data mining. Int J Comput Inf Syst 4(3):143–154

    Google Scholar 

  42. Hong Y, Kwong S, Chang YC, Ren QS (2008) Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. Pattern Recognit 41:2742–2756

    Article  MATH  Google Scholar 

  43. Murthy CA, Chowdhury N (1996) In search of optimal clusters using genetic algorithms. Pattern Recognit Lett 17(8):825–832

    Article  Google Scholar 

  44. Tseng LY, Bien Yang S (2001) A genetic approach to the automatic clustering problem. Pattern Recognit 34(2):415–424

    Article  MATH  Google Scholar 

  45. Krishna K, Murty MN (1999) Genetic K-means algorithm. IEEE Trans Syst Man Cybern B Cybern 29(3):433–439

    Article  Google Scholar 

  46. Hong Y, Kwong S (2008) To combine steady-state genetic algorithm and ensemble learning for data clustering. Pattern Recognit Lett 29(9):1416–1423

    Article  Google Scholar 

  47. Van der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. In: IEEE congress on evolutionary computation, vol 1, pp 215–220

  48. Kao YT, Zahara E, Kao IW (2008) A hybridized approach to data clustering. Expert Syst Appl 34(3):1754–1762

    Article  Google Scholar 

  49. Tsai CY, Kao IW (2011) Particle swarm optimization with selective particle regeneration for data clustering. Expert Syst Appl 38(6):6565–6576

    Article  Google Scholar 

  50. Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  51. Niknam T, Amiri B (2010) An efficient hybrid approach based on PSO, ACO and <i>k</i> means for cluster analysis. Appl Soft Comput 10(1):183–197

    Article  Google Scholar 

  52. Satapathy SC, Naik A (2011) Data clustering based on teaching–learning-based optimization. In: Swarm, evolutionary, and memetic computing. Springer, Berlin, pp 148–156

  53. Sahoo AJ, Kumar Y (2014) Modified teacher learning based optimization method for data clustering. In: Advances in signal processing and intelligent recognition systems. Springer, Berlin, pp 429–437

  54. Al-Sultan KS (1995) A Tabu search approach to the clustering problem. Pattern Recognit 28:1443–1451

    Article  Google Scholar 

  55. Santosa B, Ningrum MK (2009) Cat swarm optimization for clustering. In: IEEE international conference of soft computing and pattern recognition, pp 54–59

  56. Kumar Y, Sahoo G (2015) A hybrid data clustering approach based on improved cat swarm optimization and K-harmonic mean algorithm. AI Commun 28(4):751–764

    Article  MathSciNet  Google Scholar 

  57. Kumar Y, Sahoo G (2015) Gaussian cat swarm optimization algorithm based on Monte Carlo method for data clustering. Int J Comput Sci Eng (in press)

  58. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  59. Yan X, Zhu Y, Zou W, Wang L (2012) A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97:241–250

    Article  Google Scholar 

  60. Zhang Y, Wu L, Wang S, Huo Y (2011) Chaotic artificial bee colony used for cluster analysis. In: Intelligent computing and information science. Springer, Berlin, pp 205–211

  61. Kumar Y, Sahoo G (2014) A charged system search approach for data clustering. Prog Artif Intell 2(2–3):153–166

    Article  Google Scholar 

  62. Kumar Y, Sahoo G (2015) Hybridization of magnetic charge system search and particle swarm optimization for efficient data clustering using neighborhood search strategy. Soft Comput 19(12):3621–3645

    Article  Google Scholar 

  63. Kang F, Li JJ, Xu Q (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87:861–870

    Article  Google Scholar 

  64. Kang F, Li JJ, Ma ZY (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531

    Article  MathSciNet  MATH  Google Scholar 

  65. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687

    Article  Google Scholar 

  66. Duan HB, Xu CF, Xing ZH (2010) A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems. Int J Neural Syst 20:39–50

    Article  Google Scholar 

  67. Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11:2888–2901

    Article  Google Scholar 

  68. Li GQ, Niu PF, Xiao XJ (2012) Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl Soft Comput 12:320–332

    Article  Google Scholar 

  69. Gao WF, Liu SY, Huang LL (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Syst Man Cybern Part B 43:1011–1024

    Google Scholar 

  70. Coelho LS, Alotto P (2011) Gaussian artificial bee colony algorithm approach applied to Loney’s solenoid benchmark problem. IEEE Trans Magn 47:1326–1329

    Article  Google Scholar 

  71. Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39:687–697

    Article  MATH  Google Scholar 

  72. Alam MS, Kabir MW, Islam MM (2010) Self-adaptation of mutation step size in artificial bee colony algorithm for continuous function optimization. In: Proceedings of the 13th international conference on computer and information technology, vol 3, pp 23–25

  73. Kang F, Li J, Li H (2013) Artificial bee colony algorithm and pattern search hybridized for global optimization. Appl Soft Comput 13(4):1781–1791

    Article  Google Scholar 

  74. Jadhav HT, Roy R (2013) Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power. Expert Syst Appl 40(16):6385–6399

    Article  Google Scholar 

  75. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

  76. Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8(2):212–229

    Article  MATH  Google Scholar 

  77. Wang YJ, Zhang JS (2007) Global optimization by an improved differential evolutionary algorithm. Appl Math Comput 188(1):669–680

    MathSciNet  MATH  Google Scholar 

  78. Al-Sultan KS, Al-Fawzan MA (1997) A tabu search Hooke and Jeeves algorithm for unconstrained optimization. Eur J Oper Res 103(1):198–208

    Article  MATH  Google Scholar 

  79. Rios-Coelho AC, Sacco WF, Henderson N (2010) A Metropolis algorithm combined with Hooke–Jeeves local search method applied to global optimization. Appl Math Comput 217(2):843–853

    MathSciNet  MATH  Google Scholar 

  80. Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  81. http://archive.ics.uci.edu/ml/. Access date 8 Nov 2014

  82. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Article  Google Scholar 

  83. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  84. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugal kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

kumar, Y., Sahoo, G. A two-step artificial bee colony algorithm for clustering. Neural Comput & Applic 28, 537–551 (2017). https://doi.org/10.1007/s00521-015-2095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2095-5

Keywords

Navigation