Skip to main content
Log in

A novel hybrid DE–random search approach for unit commitment problem

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Differential evolution (DE) is a population-based stochastic search algorithm, whose simple yet powerful and straightforward features make it very attractive for numerical optimization. DE uses a rather greedy and less stochastic approach to problem-solving than other evolutionary algorithms. DE combines simple arithmetic operators with the classical operators of recombination, mutation and selection to evolve from a randomly generated starting population to a final solution. Although global exploration ability of DE algorithm is adequate, its local exploitation ability is feeble and convergence velocity is too low and it suffers from the problem of untime convergence for multimodal objective function, in which search process may be trapped in local optima and it loses its diversity. Also, it suffers from the stagnation problem, where the search process may infrequently stop proceeding toward the global optimum even though the population has not converged to a local optimum or any other point. To improve the exploitation ability and global performance of DE algorithm, a novel and hybrid version of DE algorithm is presented in the proposed research. This research paper presents a hybrid version of DE algorithm combined with random search for the solution of single-area unit commitment problem. The hybrid DE–random search algorithm is tested with IEEE benchmark systems consisting of 4, 10, 20 and 40 generating units. The effectiveness of proposed hybrid algorithm is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by experimental analysis, it has been found that proposed algorithm yields global results for the solution of unit commitment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamboj VK (2015) A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput Appl. ISSN: 1433-3058. doi:10.1007/s00521-015-1962-4

  2. Zhu J (2009) Unit commitment. In: Hanzo L (ed) Optimization of power system operation, Chap. 7, 1st edn. Wiley-IEEE Press, Hoboken, NJ, pp 251–293

  3. Rajan CCA, Mohan MR, Manivannan K (2002) Neural based tabu search method for solving unit commitment problem. In: Proceedings of international conference on power system management and control (Conference Publication No. 488). London, UK, pp 180–185

  4. Kumar V, Bath SK (2013) Single area unit commitment problem by modern soft computing techniques. Int J Enhanc Res Sci Technol Eng 2(3). ISSN No: 2319-7463

  5. Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: Proceedings of IEEE power engineering society general meeting, Vol. 3. San Francisco, CA, pp 2752–2759

  6. Xiong W, Li MJ, Cheng YL (2008) An improved particle swarm optimization algorithm for unit commitment. In: Proceedings of international conference on intelligent computation technology and automation (ICICTA-2008), Vol. 2, Changsha, Hunan, China, pp 21–25

  7. Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of 15th international conference on intelligent system applications to power systems, Curitiba, Brazil, pp 1–6

  8. Ge W (2010) Ramp rate constrained unit commitment by improved priority list and enhanced particle swarm optimization. In: Proceedings of 2010 international conference on computational intelligence and software engineering (CiSE 2010), Wuhan, China, pp 1–8

  9. Borghetti A, Frangioni A, Lacalandra F, Lodi A, Martello S, Nucci CA, Trebbi A (2001) Lagrangian relaxation and tabu search approaches for the unit commitment problem. In: Proceedings of IEEE power tech conference, Vol. 3, Porto, Portugal, pp 1–7

  10. Gaing ZL (2003) Discrete particle swarm optimization algorithm for unit commitment. In: Proceedings of IEEE power engineering society general meeting, vol 1, Toronto, Canada, pp 418–424

  11. Rajan CCA, Mohan MR, Manivannan K (2003) Neural based tabu search method for solving unit commitment problem. IEE Proc Gener Trans Distrib 150(4):469–474

    Article  Google Scholar 

  12. Gaing ZL (2003) Discrete particle swarm optimization algorithm for unit commitment. In: IEEE power engineering society general meeting, 2003, vol 1, pp 418–424, 13–17

  13. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28:482–490

    Article  Google Scholar 

  14. Lee TY, Chen CL (2007) Unit commitment with probabilistic reserve: an IPSO approach. Energy Convers Manag 48(2):486–493

    Article  Google Scholar 

  15. Samudi C, Das GP, Ojha PC, Sreeni TS, Cherian S (2008) Hydro-thermal scheduling using particle swarm optimization. In: IEEE/PES transmission and distribution conference and exhibition, pp 1–5

  16. Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055

    Article  Google Scholar 

  17. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584

    Article  Google Scholar 

  18. Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. PHI, New Delhi

    Google Scholar 

  19. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  20. Kerr RH, Scheidt JL, Fontana AJ, Wiley JK (1966) Unit commitment. IEEE Trans Power Appar Syst PAS-85(5):417–421

    Article  Google Scholar 

  21. Hara K, Kimura M, Honda N (1966) A method for planning economic unit commitment and maintenance of thermal power systems. IEEE Trans Power Appar Syst 85(5):421–436

    Google Scholar 

  22. Guy JD (1971) Security constrained unit commitment. IEEE Trans Power Appar Syst 90:1385–1389

    Article  Google Scholar 

  23. Lowery PG (1966) Generating unit commitment by dynamic programming. IEEE Trans Power Appar Syst PAS-85(5):422–426

    Article  Google Scholar 

  24. Hobbs WJ, Hermon G, Warner S, Sheble GB (1988) An enhanced dynamic programming approach for unit commitment. IEEE Trans Power Syst 3:1201–1205

    Article  Google Scholar 

  25. Li T, Shahidehpour SM (2005) Price-based unit commitment: a case of Lagrangian relaxation versus mixed integer programming. IEEE Trans Power Syst 20(4):2015–2025

    Article  Google Scholar 

  26. Venkatesh B, Jamtsho T, Gooi HB (2007) Unit commitment a fuzzy mixed integer linear programming solution. IET Gener Transm Distrib 1(5):836–846

    Article  Google Scholar 

  27. Saini LM, Soni MK (2002) Artificial neural network-based peak load forecasting using conjugate gradient methods. IEEE Trans Power Syst 17(3):907–912

    Article  Google Scholar 

  28. Guan X, Zhai Q, Papalexopoulos A (2003) Optimization based methods for unit commitment: Lagrangian relaxation versus general mixed integer programming. In: Proceedings of IEEE power engineering society general meeting, Toronto, Canada, vol. 2, pp 1095–1100

  29. Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power Appar Syst 102(2):444–451

    Article  Google Scholar 

  30. Salam M-S, Hamdan A-R, Mohamed Nor K (1991) Integrating an expert system into a thermal unit-commitment algorithm. IEE Proc C 138:553–559

    Google Scholar 

  31. Kadam DP, Sonwane PM, Dhote VP, Kushare BE (2009) Fuzzy logic algorithm for unit commitment problem. In: Proceedings of international conference on control, automation, communication and energy conversation (INCACEC-2009), Perundurai, Erode, India, pp 1–4

  32. Yalcinoz T, Short MJ, Cory BJ (1999) Application of neural networks to unit commitment. IEEE Trans Power Syst 2:649–654. doi:10.1109/AFRCON.1999.821841

    Google Scholar 

  33. Simopoulos D, Contaxis G (2004) Unit commitment with ramp rate constraints using the simulated annealing algorithm. In: Proceedings of IEEE mediterranean electrotechnical conference (MELECON 2004), Dubrovnik, Croatia, pp 845–849, 12–15 May 2004

  34. Mantawy AH, Abdel-Magid YL, Selim SZ (1998) Unit commitment by tabu search. IEE Proc Gener Transm Distrib 145(1):56–64

    Article  Google Scholar 

  35. Yare Y, Venayagamoorthy GK, Saber AY (2009) Economic dispatch of a differential evolution based generator maintenance scheduling of a power system. In Power and energy society general meeting, 2009(PES ‘09) IEEE, Calgary, Alberta, 26–30 July 2009, pp 1–8

  36. Sharma R, Panigrahi BK, Rout PK, Krishnanand KR (2011) A solution to economic load dispatch problem with non-smooth cost function using self-realized differential evolution optimization algorithm. In: Energy, automation, and signal (ICEAS), 2011 international conference, 28–30 Dec 2011, pp 1–6

  37. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, Berkeley, CA

  38. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  39. Kazarlis SA, Bakirtzis AG, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92

    Article  Google Scholar 

  40. Senjyu T, Yamashiro H, Uezato K, Funabashi T (2002) A unit commitment problem by using genetic algorithm based on unit characteristics classifications. In: Proceeding 2002 IEEE Power Engineering Society, Winter Meeting, vol 1, pp 58–63

  41. Senjyu T, Yamashiro H, Shimabukuro K, Uezato K, Funabashi T (2002) A fast solution technique for large scale unit commitment problem using genetic algorithm. In: Proceedings of IEEE power engineering society transmission district conference exhibition, vol. 3, pp 1611–1616

  42. Valenzuela J, Smith AE (2002) A seeded memetic algorithm for large unit commitment problems. J Heuristics 8:173–195

    Article  Google Scholar 

  43. Marifeld TT, Sheble GB (1996) Genetic based unit commitment algorithm. IEEE Trans Power Syst 11(3):1359–1370

    Article  Google Scholar 

  44. Ganguly D, Sarkar V, Pal J (2004) A new genetic approach for solving the unit commitment problem. In: 2004 international conference on power system technology-POWERCON 2004, Singapore, pp 542–547, 21–24

  45. Gaing Z-L (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans Power Syst 18(3):1187–1195

    Article  Google Scholar 

  46. Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: Power engineering society general meeting, vol 3, 12–16 June 2005. IEEE, pp 2752–2759. doi:10.1109/PES.2005.1489390

  47. Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. In: Power systems conference and exposition, 2006. PSCE ‘06. 2006 EEE PES Oct 29–Nov 1 2006, pp 193–201

  48. Damousis IG, Bakirtzis AG, Dokopoulos PS (2004) A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Trans Power Syst 19(2):1165–1172

    Article  Google Scholar 

  49. Cheng C-P, Liu C-W, Liu C-C (2000) Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Trans Power Syst 15(2):707–714

    Article  Google Scholar 

  50. Cheng C-P, Liu C-W, Liu C-C (2000) Unit commitment by annealing genetic algorithms. Electr Power Energy Syst 24:149–158

    Article  Google Scholar 

  51. Ting TO, Rao MVC, Loo CK (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418

    Article  Google Scholar 

  52. Saber AY, Senjyu T, Urasaki N, Funabashi T (2006) Unit commitment computation—a novel fuzzy adaptive particle swarm optimization approach. In: Power systems conference and exposition PSCE ’06. IEEE, pp 1820–1828. doi:10.1109/PSCE.2006.296189

  53. Tokoro K, Masuda Y, Nishino H (2008) Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: SICE annual conference 2008, The University Electro-Communications, Japan, 20–22 Aug 2008

  54. Ongsakul W, Petcharaks N (2004) Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans Power Syst 19(1):620–628

    Article  Google Scholar 

  55. Sheble GB et al (1997) Unit commitment by genetic algorithm with penalty method and a comparison of Lagrangian search and genetic algorithm economic dispatch example. Int J Electr Power Energy Syst 19(1):45–55

    Article  Google Scholar 

  56. Grefensttete JJ (1986) Optimization of control parameters for genetic algorithm. IEEE Trans Syst Man Cybern 16:122–128

    Article  Google Scholar 

  57. Zhe W, Yiyin Y, Hongpeng Z (2004) Social evolutionary programming based unit commitment. Proc CSEE 24(4):24–28

    Google Scholar 

  58. Fei L, Jinghua L (2009) A solution to the unit commitment problem based on local search method. In: 2009 international conference on energy and environment technology, proceeding international conference on energy and environment technology, 2009 (ICEET ‘09), vol 2, 16–18 Oct 2009, Guilin, Guangxi, pp 51–56

  59. Wang B, Li Y, Watada J (2011) Re-scheduling the unit commitment problem in fuzzy environment. In: 2011 IEEE international conference on fuzzy systems, Taipei, Taiwan, 27–30 June 2011

  60. Lee S, Park H, Jeon M (2007) Binary particle swarm optimization with bit change mutation. IEICE Trans Fundam Electron Commun Comput Sci E-90A(10):2253–2256

    Article  Google Scholar 

  61. Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36(4):8049–8055. doi:10.1016/j.eswa.2008.10.047

    Article  Google Scholar 

  62. Jallilzadeh S, Pirhayati Y (2009) An improved genetic algorithm for unit commitment problem with lowest cost. In: Proceedings of IEEE international conference intelligent computing, pp 571–575

  63. Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76

    Article  Google Scholar 

  64. Chung CY, Yu H, Wong KP (2006) An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854

    Article  Google Scholar 

  65. Jeong Y, Park J, Jang S, Lee KY (2010) A new quantum-inspired binary PSO: application to unit commitment problems for power systems. IEEE Trans Power Syst 25(3):1486–1495

    Article  Google Scholar 

  66. Chakraborty S, Senjyu T, Yona A, Funabashi T (2011) Fuzzy quantum computation based thermal unit commitment strategy with solar battery system injection. In: 2011 IEEE international conference on fuzzy systems. Taipei, Taiwan, 27–30 June 2011

  67. Senjyu T, Yamashiro H, Shimabukuro K, Uezato K, Funabashi T (2003) Fast solution technique for large-scale unit commitment problem using genetic algorithm. In: IEEE proceedings of genetics transmission distribution 150(6)

  68. Victoire TAA, Jeyakumar AE (2004) Hybrid PSO–SQP for economic dispatch with valve-point effect. Electr Power Syst Res 71(1):51–59

    Article  Google Scholar 

  69. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Electr Power Energy Syst 28(7):482–490

    Article  Google Scholar 

  70. Jeong YW, Park JB, Jang SH, Lee KY (2009) A new quantum-inspired binary PSO for thermal unit commitment problems. In: Proceedings of IEEE 15th international conference intelligent system applications to power systems, pp 1–6

  71. Sadati N, Hajian M, Zamani M (2007) Unit commitment using particle swarm based simulated annealing optimization approach. In: Proceeding of the IEEE swarm intelligence symposium (SIS2007), pp 297–302

  72. Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2003) A fast technique for unit commitment problem by extended priority list. IEEE Trans Power Syst 18(2):882–888. doi:10.1109/TPWRS.2003.811000

    Article  Google Scholar 

  73. Sum-im T, Ongsakul W (2003) Ant colony search algorithm for unit commitment. In: IEEE conference on ICIT

  74. Saber AY, Senju T, Miyagi T, Urasaki N, Funabashi T (2005) Absolute stochastic simulated annealing approach to unit commitment problem. In: Proceedings of the 13th international conference on intelligent systems application to power systems, ISAP, Arlington, VA, 6–10 Nov 2005, pp 434–439. doi:10.1109/ISAP.2005.1599303

  75. Jeong Yun-Won, Lee Woo-Nam, Kim Hyun-Houng, Park Jong-Bae, Shin Joong-Rin (2009) Thermal unit commitment using binary differential evolution. J Electr Eng Technol 4(3):323–329

    Article  Google Scholar 

  76. Khanmohammadi S, Amiri M, Haque MT (2010) A new three-stage method for solving unit commitment problem. Energy 3072–3080. doi:10.1016/j.energy.2010.03.049

  77. Gaing ZL (2003) Discrete particle swarm optimization algorithm for unit commit-ment. In: IEEE power engineering society general meeting, vol 1. pp 13–17

  78. Pappala VS, Erlich I (2008) A new approach for solving the unit commitment problem by adaptive particle swarm optimization. In: Power and energy society general meeting-conversion and delivery of electrical energy in the 21st century. IEEE, USA, pp 1–6

  79. Eldin AS, El-sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 12th international middle east power system conference, MEPCO, Aswan, pp 425–430

  80. Xiong W, Li MJ, Cheng YL (2008) An improved particle swarm optimization algorithm for unit commitment. In: Proceedings of the 2008 international conference on intelligent computation technology and automation, vol. 01, pp 21–25

  81. Chusanapiputt S, Nualhong D, Jantarang S, Phoomvuthisarn S (2008) A solution to unit commitment problem using hybrid ant system/priority list method. In: IEEE 2nd international conference on power and energy, PECon 08, Malaysia, p 1183e8

  82. Tokoro KI, Masuda Y, Nishina H (2008) Solving unit commitment problem by combining of continuous relaxation method and genetic algorithm. In: SICE annual conference. The University Electro-Communications, Japan, p 3474e8

  83. Tingfang Y, Ting TO (2008) Methodological priority list for unit commitment problem. In: International conference on computer science and software engineering, CSSE, vol 1, p 176e9

  84. Eldin AS, El-sayed MAH, Youssef HKM (2008) A two-stage genetic based technique for the unit commitment optimization problem. In: 12th international middle east power system conference, MEPCO, Aswan, p 425e30

  85. Provas Kumar Roy (2013) Solution of unit commitment problem using gravitational search algorithm. Electr Power Energy Syst 53:85–94

    Article  Google Scholar 

  86. Chandram K, Subrahmanyam N, Sydulu M (2011) Unit commitment by improved pre-prepared power demand table and Muller method. Int J Electr Power Energy Syst 33:106–114

    Article  Google Scholar 

  87. Chakraborty S, Ito T, Senjyu T, Saber AY (2012) Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm. Int J Electr Power Energy Syst 43(1):1072–1080

    Article  Google Scholar 

  88. Chandrasekaran K, Simon SP (2012) Network and reliability constrained unit commitment problem using binary real coded firefly algorithm. Int J Electr Power Energy Syst 43(1):921–932

    Article  Google Scholar 

  89. Mohammed Z, Talaq J Unit commitment by biogeography based optimization method. IEEE 551–554

  90. Juste KA, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459. doi:10.1109/59.801925

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank I.K. Gujral Punjab Technical University, Jalandhar, for providing advanced research facilities during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Appendix

Appendix

See Tables 18, 19, 20 and 21 and Figs. 5 and 6.

Table 18 Test data for 4-unit system [76]
Table 19 Load demand for 4-unit test system
Table 20 Test data for 10-unit system [76]
Table 21 Load demand pattern for 24 h for 10-unit system
Fig. 5
figure 5

PSEUDO code for DE and random search algorithm

Fig. 6
figure 6

Load demand pattern for 10-, 20- and 40-unit test system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, V.K., Bath, S.K. & Dhillon, J.S. A novel hybrid DE–random search approach for unit commitment problem. Neural Comput & Applic 28, 1559–1581 (2017). https://doi.org/10.1007/s00521-015-2124-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2124-4

Keywords

Navigation