Skip to main content
Log in

Evolving neural networks and fuzzy clustering for multireservoir operations

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This research presents complex reservoir operation problems based on evolving neural network (ENN), which derive operating policies directly. Four models are studied in this paper. Elitist-mutated particle swarm optimization algorithm is used for training these models. At first, ENN is analyzed when inputs are either actual or normalized data, and then, ENN is developed based on cluster analysis. Since hard classification assigns each fact to one class, this cannot consider the data which may belong to two clusters or more. In contrast, fuzzy clustering can overcome the difficulty. Among fuzzy clustering programs, fuzzy c-means (FCM) is a very popular technique and is chosen for the purposes of this research. To validate the applicability of this methodology, a complex multireservoir system in Karkheh River Basin, southwestern Iran, is chosen. To allocate water, a technique based on simulation is developed. The results show that ENN based on actual data outperforms the model based on normalized data. Moreover, ENN conditioned on FCM is demonstrated to outperform K-means clustering-based ENN and regular ENN. The main contributions of this paper are threefold: first, improvement of ENN when applied for parallel-series reservoirs, second, further improvement via fuzzy clustering, and third, development of an allocation technique for reservoirs with parallel and cascade configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oliveira R, Loucks DP (1997) Operating rules for multireservoir systems. Water Resour Res 33(4):839–852. doi:10.1029/96WR03745

    Article  Google Scholar 

  2. Lee J-H, Labadie JW (2007) Stochastic optimization of multireservoir systems via reinforcement learning. Water Resour Res 43(11):W11408. doi:10.1029/2006WR005627

    Article  Google Scholar 

  3. Rieker JD, Labadie JW (2012) An intelligent agent for optimal river-reservoir system management. Water Resour Res 48(9):W09550. doi:10.1029/2012WR011958

    Article  Google Scholar 

  4. Young GK (1967) Finding reservoir operating rules. In: Proceedings of the American Society of Civil Engineers, pp 297–321

  5. Bhaskar NR, Whitlatch EE (1980) Derivation of monthly reservoir release policies. Water Resour Res 16(6):987–993. doi:10.1029/WR016i006p00987

    Article  Google Scholar 

  6. Momtahen S, Dariane A (2007) Direct search approaches using genetic algorithms for optimization of water reservoir operating policies. J Water Resour Plan Manag 133(3):202–209. doi:10.1061/(ASCE)0733-9496(2007)133:3(202)

    Article  Google Scholar 

  7. Raman H, Chandramouli V (1996) Deriving a general operating policy for reservoirs using neural network. J Water Resour Plan Manag 122(5):342–347. doi:10.1061/(ASCE)0733-9496(1996)122:5(342)

    Article  Google Scholar 

  8. Chandramouli V, Raman H (2001) Multireservoir modeling with dynamic programming and neural networks. J Water Resour Plan Manag 127(2):89–98. doi:10.1061/(ASCE)0733-9496(2001)127:2(89)

    Article  Google Scholar 

  9. Cancelliere A, Giuliano G, Ancarani A, Rossi G (2002) A neural networks approach for deriving irrigation reservoir operating rules. Water Resour Manag 16(1):71–88

    Article  Google Scholar 

  10. Chandramouli V, Deka P (2005) Neural network based decision support model for optimal reservoir operation. Water Resour Manag 19(4):447–464

    Article  Google Scholar 

  11. Sharif M, Wardlaw R (2000) Multireservoir systems optimization using genetic algorithms: case study. J Comput Civil Eng 14(4):255–263. doi:10.1061/(ASCE)0887-3801(2000)14:4(255)

    Article  Google Scholar 

  12. Dariane A, Moradi A (2010) Application of ant-colony-based algorithms to multi-reservoir water resources problems. J Water Wastewater 76:81–91 (in Farsi)

    Google Scholar 

  13. Masse P (1946) Les réserves et la régulation de l’Avenir. Hermann, Paris

    MATH  Google Scholar 

  14. Stedinger JR, Sule BF, Loucks DP (1984) Stochastic dynamic programming models for reservoir operation optimization. Water Resour Res 20(11):1499–1505. doi:10.1029/WR020i011p01499

    Article  Google Scholar 

  15. Little JD (1955) The use of storage water in a hydroelectric system. J Oper Res Soc Am 3(2):187–197

    Google Scholar 

  16. Butcher WS (1971) Stochastic dynamic programming for optimum reservoir operation. J Am Water Resour Assoc 7(1):115–123

    Article  Google Scholar 

  17. Braga BP Jr, Yen WW-G, Becker L, Barros MT (1991) Stochastic optimization of multiple-reservoir-system operation. J Water Resour Plan Manag 117(4):471–481. doi:10.1061/(ASCE)0733-9496(1991)117:4(471)

    Article  Google Scholar 

  18. Tejada-Guibert JA, Johnson SA, Stedinger JR (1995) The value of hydrologic information in stochastic dynamic programming models of a multireservoir system. Water Resour Res 31(10):2571–2579. doi:10.1029/95WR02172

    Article  Google Scholar 

  19. Castelletti A, Galelli S, Restelli M, Soncini-Sessa R (2010) Tree-based reinforcement learning for optimal water reservoir operation. Water Resour Res 46(9):W09507. doi:10.1029/2009WR008898

    Article  Google Scholar 

  20. Kelman J, Stedinger JR, Cooper LA, Hsu E, Yuan SQ (1990) Sampling stochastic dynamic programming applied to reservoir operation. Water Resour Res 26(3):447–454. doi:10.1029/WR026i003p00447

    Article  Google Scholar 

  21. Faber B, Stedinger J (2001) Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. J Hydrol 249(1):113–133

    Article  Google Scholar 

  22. Huang WC, Yuan LC, Lee CM (2002) Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multireservoir system. Water Resour Res 38(12):1304. doi:10.1029/2001WR001122

    Article  Google Scholar 

  23. Ponnambalam K, Adams BJ (1996) Stochastic optimization of multi reservoir systems using a heuristic algorithm: case study from India. Water Resour Res 32(3):733–741. doi:10.1029/95WR03484

    Article  Google Scholar 

  24. Labadie JW (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manag 130(2):93–111. doi:10.1061/(ASCE)0733-9496(2004)130:2(93)

    Article  Google Scholar 

  25. Dariane AB, Momtahen S (2009) Optimization of multireservoir systems operation using modified direct search genetic algorithm. J Water Resour Plan Manag 135(3):141–148. doi:10.1061/(ASCE)0733-9496(2009)135:3(141)

    Article  Google Scholar 

  26. Koutsoyiannis D, Economou A (2003) Evaluation of the parameterization–simulation–optimization approach for the control of reservoir systems. Water Resour Res 39(6):1170. doi:10.1029/2003WR002148

    Article  Google Scholar 

  27. Gosavi A (2003) Simulation-based optimization: parametric optimization techniques and reinforcement learning, vol 25. Kluwer, Boston

    MATH  Google Scholar 

  28. Castelletti A, Pianosi F, Restelli M (2013) A multiobjective reinforcement learning approach to water resources systems operation: Pareto frontier approximation in a single run. Water Resour Res. doi:10.1002/wrcr.20295

    Google Scholar 

  29. Dariane AB, Moradi AM (2014) A comparative analysis of evolving artificial neural network and reinforcement learning in stochastic optimization of multireservoir systems. Hydrol Sci J. doi:10.1080/02626667.2014.986485

    Google Scholar 

  30. Chaves P, Chang F-J (2008) Intelligent reservoir operation system based on evolving artificial neural networks. Adv Water Resour 31(6):926–936

    Article  Google Scholar 

  31. Pianosi F, Thi XQ, Soncini-Sessa R (2011) Artificial neural networks and multi objective genetic algorithms for water resources management: an application to the HoaBinh reservoir in Vietnam. In: Proceedings of 18th IFAC World Congress, Milan, Italy, Aug 28–Sept 2 2011. International Federation of Automatic Control (IFAC), pp 10579–10584

  32. Dariane AB, Karami F (2014) Deriving hedging rules of multi-reservoir system by online evolving neural networks. Water Resour Manag 28(11):3651–3665

    Article  Google Scholar 

  33. Sexton RS, Dorsey RE, Johnson JD (1998) Toward global optimization of neural networks: a comparison of the genetic algorithm and backpropagation. Decis Support Syst 22(2):171–185

    Article  Google Scholar 

  34. Parasuraman K, Elshorbagy A (2007) Cluster-based hydrologic prediction using genetic algorithm-trained neural networks. J Hydrol Eng 12(1):52–62. doi:10.1061/(ASCE)1084-0699(2007)12:1(52)

    Article  Google Scholar 

  35. Shi JJ (2002) Clustering technique for evaluating and validating neural network performance. J Comput Civil Eng 16(2):152–155. doi:10.1061/(ASCE)0887-3801(2002)16:2(152)

    Article  Google Scholar 

  36. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 2, Perth, Australia, pp 1942–1948

  37. Kumar DN, Reddy MJ (2007) Multipurpose reservoir operation using particle swarm optimization. J Water Resour Plan Manag 133(3):192–201. doi:10.1061/(ASCE)0733-9496(2007)133:3(192)

    Article  Google Scholar 

  38. Hagan MT, Demuth HB, Beale MH (1996) Neural network design. Pws Pub, Boston

    Google Scholar 

  39. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  40. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell

    Book  MATH  Google Scholar 

  41. Randall D, Cleland L, Kuehne CS, Link GWB, Sheer DP (1997) Water supply planning simulation model using mixed-integer linear programming “engine”. J Water Resour Plan Manag 123(2):116–124. doi:10.1061/(ASCE)0733-9496(1997)123:2(116)

    Article  Google Scholar 

  42. Reis L, Walters G, Savic D, Chaudhry F (2005) Multi-reservoir operation planning using hybrid genetic algorithm and linear programming (GA–LP): an alternative stochastic approach. Water Resour Manag 19(6):831–848

    Article  Google Scholar 

  43. Reis L, Bessler F, Walters G, Savic D (2006) Water supply reservoir operation by combined genetic algorithm–linear programming (GA–LP) approach. Water Resour Manag 20(2):227–255

    Article  Google Scholar 

  44. Chang L-C, Ho C-C, Chen Y-W (2010) Applying multiobjective genetic algorithm to analyze the conflict among different water use sectors during drought period. J Water Resour Plan Manag 136(5):539–546. doi:10.1061/(ASCE)WR.1943-5452.0000069

    Article  Google Scholar 

  45. Vedula S, Mujumdar P (1992) Optimal reservoir operation for irrigation of multiple crops. Water Resour Res 28(1):1–9. doi:10.1029/91WR02360

    Article  Google Scholar 

  46. Mujumdar P, Ramesh T (1997) Real-time reservoir operation for irrigation. Water Resour Res 33(5):1157–1164. doi:10.1029/96WR03907

    Article  Google Scholar 

  47. Babel M, Gupta AD, Nayak D (2005) A model for optimal allocation of water to competing demands. Water Resour Manag 19(6):693–712

    Article  Google Scholar 

  48. WEAP (2011) Water Evaluation and planing system-user guide. Stockholm Environment Institute (SEI), Somerville

    Google Scholar 

  49. Nilsson P, Uvo CB, Berndtsson R (2006) Monthly runoff simulation: comparing and combining conceptual and neural network models. J Hydrol 321(1):344–363

    Article  Google Scholar 

  50. Elshorbagy A, Parasuraman K (2008) Toward bridging the gap between data-driven and mechanistic models: cluster-based neural networks for hydrologic processes. In: Abrahart RJSL, Solomatine D (eds) Practical hydroinformatics. Springer, Berlin, pp 389–403

    Chapter  Google Scholar 

  51. Wu C, Chau K, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389(1):146–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Dariane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A.M., Dariane, A.B. Evolving neural networks and fuzzy clustering for multireservoir operations. Neural Comput & Applic 28, 1149–1162 (2017). https://doi.org/10.1007/s00521-015-2130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2130-6

Keywords

Navigation