Skip to main content
Log in

Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This article introduces an adaptive network-based fuzzy inference system (ANFIS) model and two linear and nonlinear regression models to predict the compressive strength of geopolymer composites. Geopolymers are highly complex materials which involve many variables which make modeling its properties very difficult. There is no systematic approach in the mix design for geopolymers. The amounts of silica modulus, Na2O content, w/b ratios, and curing time have a great influence on the compressive strength. In this study, by developing and comparing parametric linear and nonlinear regressions and ANFIS models, we dealt with predicting the compressive strength of geopolymer composites for possible use in mix-design framework considering the mentioned complexities. ANFIS model developed by generalized bell-shaped membership function was recognized the best approach, and the prediction results of linear and nonlinear regression models as empirical methods showed the weakness of these models comparing ANFIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA (2011) Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr Build Mater 25(10):4065–4071. doi:10.1016/j.conbuildmat.2011.04.044

    Article  Google Scholar 

  2. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266. doi:10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  3. Hu MY, Zhu XM, Long FM (2009) Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem Concrete Compos 31(10):762–768. doi:10.1016/j.cemconcomp.2009.07.006

    Article  Google Scholar 

  4. Nazari A, Khalaj G (2012) Prediction compressive strength of lightweight geopolymers by ANFIS. Ceram Int 38(6):4501–4510. doi:10.1016/j.ceramint.2012.02.026

    Article  Google Scholar 

  5. Bondar D, Lynsdale CJ, Milestone NB, Hassani N, Ramezanianpour AA (2011) Effect of adding mineral additives to alkali-activated natural pozzolan paste. Constr Build Mater 25(6):2906–2910. doi:10.1016/j.conbuildmat.2010.12.031

    Article  Google Scholar 

  6. Davidovits J (1991) Geopolymers—inorganic polymeric new materials. J Therm Anal 37(8):1633–1656. doi:10.1007/Bf01912193

    Article  Google Scholar 

  7. Komnitsas KA (2011) Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng 21:1023–1032. doi:10.1016/j.proeng.2011.11.2108

    Article  Google Scholar 

  8. Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Des 57:667–672. doi:10.1016/j.matdes.2014.01.064

    Article  Google Scholar 

  9. Verdolotti L, Iannace S, Lavorgna M, Lamanna R (2008) Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci 43(3):865–873. doi:10.1007/s10853-007-2201-x

    Article  Google Scholar 

  10. Nazari A (2013) Compressive strength of geopolymers produced by ordinary Portland cement: application of genetic programming for design. Mater Des 43:356–366. doi:10.1016/j.matdes.2012.07.012

    Article  Google Scholar 

  11. Bohlooli H, Nazari A, Khalaj G, Kaykha MM, Riahi S (2012) Experimental investigations and fuzzy logic modeling of compressive strength of geopolymers with seeded fly ash and rice husk bark ash. Compos Part B Eng 43(3):1293–1301. doi:10.1016/j.compositesb.2012.01.012

    Article  Google Scholar 

  12. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) The potential use of geopolymeric materials to immobilise toxic metals. 1. Theory and applications. Miner Eng 10(7):659–669. doi:10.1016/S0892-6875(97)00046-0

    Article  Google Scholar 

  13. Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr Build Mater 24(5):709–718. doi:10.1016/j.conbuildmat.2009.10.037

    Article  Google Scholar 

  14. Lyu SJ, Wang TT, Cheng TW, Ueng TH (2013) Main factors affecting mechanical characteristics of geopolymer revealed by experimental design and associated statistical analysis. Constr Build Mater 43:589–597. doi:10.1016/j.conbuildmat.2013.02.033

    Article  Google Scholar 

  15. Akib S, Mohammadhassani M, Jahangirzadeh A (2014) Application of ANFIS and LR in prediction of scour depth in bridges. Comput Fluids 91:77–86. doi:10.1016/j.compfluid.2013.12.004

    Article  Google Scholar 

  16. Jang JSR (1993) Anfis—adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. doi:10.1109/21.256541

    Article  Google Scholar 

  17. Yuan Z, Wang LN, Ji X (2014) Prediction of concrete compressive strength: research on hybrid models genetic based algorithms and ANFIS. Adv Eng Softw 67:156–163. doi:10.1016/j.advengsoft.2013.09.004

    Article  Google Scholar 

  18. Madandoust R, Bungey JH, Ghayidel R (2012) Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput Mater Sci 51(1):261–272. doi:10.1016/j.commatsci.2011.07.053

    Article  Google Scholar 

  19. Yilmaz I, Yuksek G (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min 46(4):803–810. doi:10.1016/j.ijrmms.2008.09.002

    Article  Google Scholar 

  20. Ahmadi-Nedushan B (2012) Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models. Constr Build Mater 36:665–673. doi:10.1016/j.conbuildmat.2012.06.002

    Article  Google Scholar 

  21. Sadrmomtazi A, Sobhani J, Mirgozar MA (2013) Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr Build Mater 42:205–216. doi:10.1016/j.conbuildmat.2013.01.016

    Article  Google Scholar 

  22. Deshpande N, Londhe S, Kulkarni S (2014) Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and non-linear regression. Int J Sustain Built Environ 3(2):187–198

    Article  Google Scholar 

  23. Zain MFM, Abd SM (2009) Multiple regression models for compressive strength prediction of high performance concrete. J Appl Sci 9:155–160. doi:10.3923/jas.2009.155.160

    Article  Google Scholar 

  24. Yadollahi MM, Kaygusuz MA, Polat R, Demirboga R, Gül R, Majid A, Asli F (2012) Steel fibers effect in strength enhancement of geopolymer composite. J Basic Appl Sci Res 8:8416–8420

    Google Scholar 

  25. Anuradha R, Sreevidya V, Venkatasubramni R, Rangan BV, Bohlooli H (2012) Modified guidelines for geopolymer concrete mix design using Indian standard. Asian J Civil Eng 13(3):353–364

    Google Scholar 

  26. Trtnik G, Kavcic F, Turk G (2009) Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49(1):53–60. doi:10.1016/j.ultras.2008.05.001

    Article  Google Scholar 

  27. Bilgehan M, Turgut P (2010) Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity. Res Nondestruct Eval 21(1):1–17. doi:10.1080/09349840903122042

    Article  Google Scholar 

  28. Allahverdi A, Mehrpour K, Najafi Kani E (2008) Taftan pozzolan-based geopolymer cement. Int J Eng 19(3):1–5

    Google Scholar 

  29. Yadollahi MM, Benli A, Demirboga R (2015) The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Constr Build Mater 94:767–774. doi:10.1016/j.conbuildmat.2015.07.052

    Article  Google Scholar 

  30. Yadollahi MM, Benli A, Demirboga R (2015) Effects of elevated temperature on pumice based geopolymer composites. Plast Rubber Compos 44(6):226–237. doi:10.1179/1743289815Y.0000000020

    Article  Google Scholar 

  31. Yadollahi MM, Demirboga R, Polat R (2014) Effect of heat treatment temperature on ground pumice activation in geopolymer composites. Sci Eng Compos Mater 21(3):377–382. doi:10.1515/secm-2013-0100

    Article  Google Scholar 

  32. Akrami S, El-Shafie A, Jaafar O (2013) Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference system (MANFIS). Water Resour Manag 27(9):3507–3523. doi:10.1007/s11269-013-0361-9

    Article  Google Scholar 

  33. Karthika BS, Deka PC (2015) Prediction of air temperature by hybridized model (Wavelet-ANFIS) using wavelet decomposed data. Aquat Procedia 4:1155–1161. doi:10.1016/j.aqpro.2015.02.147

    Article  Google Scholar 

  34. Pourtousi M, Sahu JN, Ganesan P, Shamshirband S, Redzwan G (2015) A combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy system (ANFIS) for prediction of the bubble column hydrodynamics. Powder Technol 274:466–481. doi:10.1016/j.powtec.2015.01.038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Benli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadollahi, M.M., Benli, A. & Demirboga, R. Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites. Neural Comput & Applic 28, 1453–1461 (2017). https://doi.org/10.1007/s00521-015-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2159-6

Keywords

Navigation